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Co-mentor: Prof. dr. Siegbert Kuhn

University of Innsbruck, Austria

Ljubljana, 2009







iv



Acknowledgments

This work would not have been possible without the support and encourage-

ment of my colleague and friend, Dr. Nikola Jelić on whose suggestion I chose
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RAZŠIRITEV NEKOLIZIJSKIH RAZELEKTRITVENIH MODELOV

ZA APLIKACIJO V FUZIJSKO RELEVANTNIH IN SPLOŠNIH PLAZMAH

Ključne besede: plazemski plašč, nekolizijski razelektritveni modeli, integro-

diferencialne enačbe, fuzija, numerične metode

PACS: 52.25.Dg, 02.60.Nm, 52.40.Kh, 52.65.-y, 94.20.Fg, 95.75.Pq, 02.70.-

c, 52.58.-c

Izvleček: Doktorsko delo predstavlja matematično-numerično razširitev ne-

kolizijskih razelektritvenih modelov v široka temperaturna območja in za

primere končne debeline plazemskega plašča, ki omogočajo izpopoljnene ap-

likacije v fuzijsko relevantnih in splošnih plazmah. Prispevke dela lahko

strnemo na: (i) Obstoječi model je razširjen s tako imenovanim končnim

ε ≡ λD/L, kar pomeni, da kvazi-nevtralnost ni striktno zagotovljena, temveč

se uporablja kompletna Poissonova enačba namesto pogoja kvazinevtralnosti.

(ii) Določanje jedra je bilo izvedeno z neposredno z uporabo splošnih pro-

gramskih knjižnic. Profil potenciala je določen z zgoščeno mrežo na samo

ob steni, temveč tudi v sredǐsču simetrije tako, da se bo uporabila adap-

tivna metoda. (iii) Osnovne hidrodinamske količine, kot so ionska gostota,

ionski fluks, ionska energija in temperatura, so bili izpeljani neposredno iz

porazdelitve hitrosti na mreži z integracijo, ki je samoadaptivna v bližini sin-

gularnosti jedra integrala, kot tudi v bližini singularnosti električnega polja

oz. inverzne vrednosti. (iv) Izvedena sta dva izračuna, in sicer v širokem

spektru ionskih temperatur z upoštevanjem končne vrednosti ε in v limit-

nem primeru ε = 0.
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Abstract: Thesis presents an analytic-numerical approach extension of col-

lisionless dicharge models into wide ion-source temperature ranges and for

finite ε = λD/L. The results of this computational model will extend the

validity of the solution to both fusion-relevant and general plasmas. The

author’s approach is as follows: (i) Existing models are extended to the so-

called “finite-ε ≡ λD/L” case. This means that strict quasineutrality is not

strictly satisfied unless ε is strictly zero. (ii) In this approach, the kernel is

not approximated but calculated exactly. The grid for calculating potential

profile is refined not only at the wall of the system but also in the center

of symmetry. (iii) The basic hydrodynamic quantities like ion density, in

outflux, directional energy and temperature are derived directly from the

velocity distribution on a grid which is self-adaptive near the singularities

of the integral kernel as well as near the singularities of the electric field.

(iv) Two types of results are obtained, namely for a wide spectrum of ion

temperatures with ε = 0 and for several temperatures with ε finite.
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Φ, ψ Electrostatic potential
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τ = Te/Ti Electron/Ion temperature ratio

Ti,e Ion, electron temperature
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VDF Velocity distribution function

x Coordinate of the observation

xv



xvi



Chapter 1

Introduction

For simplicity’s sake, the plasma-wall transition layer is usually split into

two sublayers - the sheath with the width of the order of the Debye length

λD and the presheath with the characteristic length of the order of relevant

collision or ionization length L. Usually

λD � L , (1.1)

that allows to consider these two sublayers separately. This approximation is

known as the two-scale approximation. Under condition (1.1) the presheath

can be considered to be quasi-neutral, while the Debye sheath is characterized

by the charge separation.

Defining the edge of quasi-neutral plasma, i.e., the sheath boundary (or

sheath edge) is an old but still not definitely solved problem which is of high

relevance for fusion, laboratory and space plasmas. The sheath boundary

is a surface up to which plasma can be considered as quasi-neutral, and the

presheath can be modeled by using fluid approximation (instead of employing

a demanding kinetic model), with relevant boundary conditions of the sheath

entrance. However, this surface is still impossible to find with high accuracy.

The sheath boundary can be rather precisely defined only in the asymptotic

two-scale limit. In such approximation the sheath boundary can be identified

either from the plasma side (infinitely thin sheath) as the point of electric

field singularity (the famous Tonks-Langmuir model [70] from 1929), or from

the sheath side (infinitely large sheath) as the point of the vanishing electric

field (the famous Bohm model [12] from 1949). Both models were origi-

nally developed for the case of cold ion sources (ions created in plasma with
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Introduction

negligible velocities in comparison with electron velocities) and were later

generalized in a commonly adopted expression saying that the sheath edge

is a place at which the ion average velocity in the x-direction, normal to the

wall is larger or equal to the local ion sound velocity.

ui ≥
√
k(T ∗e + γTi)/mi , (1.2)

where k is Boltzmann’s constant, mi is the ion mass, T ∗e is the so-called elec-

tron “screening” temperature (T ∗e = ene/(kdne/dΦ)), Ti is the ion effective

temperature, Φ is the local plasma potential, and γ is the ion “polytropic”

coefficient (defined by dpi/dx = γkTidni/dx), with all quantities taken at

the plasma-sheath boundary. In fact the expression (1.2) is obtained in the

hydrodynamic approximation for the ion gas.

While over the last half-century γ was assumed to be constant in all

fluid plasma models, it has been recognized only recently that γ is a spa-

tially varying quantity (depending on position x in the one-dimensional case)

rather than a global constant. Kuhn et al. (2006) [40] showed by predomi-

nantly analytical means that in the asymptotic two-scale limit γi (subscript

i means ions) exhibits a sharp peak exactly at the plasma-sheath boundary.

Jelić at al. (2007) [32], performed both analytic calculations and numerical

particle-in-cell (PIC) simulations in the finite ε(= λD/L) plasmas confirming

the results of Kuhn et al. for the “cold” ion velocity distribution (Ti � Te).

However, the analytic results obtained for cold ion-sources are only of limited

importance to fusion plasmas.

In order to extend the validity of the Tonks-Langmuir model to the case of

the finite ion temperature source Bissell and Johnson [10] in 1987 developed

an appropriate model. However, their solution to the model was not enough

reliable i.e., fails for small ion-source temperatures as a consequence of their

choice of the kernel approximation in the integral equation. Secondly, Bissell

and Johnson imposed the boundary condition at the presheath boundary in

advance, based on the so-called “marginal generalized Bohm criterion”. This

assumption has been recently explicitly disproved to be valid in general (see

Riemann [53] and references therein).

On the other hand, in 1988 Scheuer and Emmert [61] used a better kernel

approximation enabling them to extend the validity of the Bissell-Johnson

model also for negligible ion-source temperatures, thus fitting excellently the

2



original Tonks-Langmuir model. Secondly, they did not impose the presheath

boundary in advance but instead they calculated it a posteriori.

However due to kernel approximations, both above solutions remain lim-

ited either for small or for large temperatures. In the present work we present

the method how to obtain the results for arbitrary Tn/Te in an arbitrary wide

range. This is done by employing the exact kernel of the integral equation

and solving it numerically. In addition, we present the results of our PIC

simulations as a highly reliable reference investigation.

Φ(x)

x

x = 0 x = Lx = −L

Φb

Φw

Figure 1.1: Schematic diagram for the collisionless discharge analysis in one-
dimensional (plane) geometry with potential Φ(x) after formation of sheaths.
The plasma center at x = 0, walls at x = ±L.

The geometry of the problem is a symmetric one-dimensional plane-

parallel as illustrated in Fig. 1.1.

For the case of the “cold ion-source velocity distribution” the final ion ve-

locity distribution was calculated analytically. The term “cold” as mentioned

above, refers to the case when ions in the plasma are born with a negligible

temperature in comparison with that of electrons. In the model, once the

equation for plasma in the presheath is solved the sheath equation (there is a

strong electric field localized in the sheath) is solved by using the boundary

condition emerged from the solution of the plasma equation.

Towards the end of the last century attempts were made on solving two-

scale problem for the case of the “warm ion-source velocity distribution”,

i.e., for the case when the ion-source temperature is comparable with the

prescribed electron temperature. In such a scenario the model’s Fredholm

equation cannot be solved unless a special ion source distribution shape is

3



Introduction

prescribed in advance so as to yield an analytic result. Therefore a numerical

computation method was applied. The original derivation by Bissell and

Johnson [10] of the physical problem yields an equation of the type

exp
(

(1 +
τ

2
)Φ
)

= B

∫ Φb

0

Ψ(Φ′) exp
(

(1 +
τ

2
)Φ′
)

K0

(τ
2
|Φ− Φ′|

)
dΦ′ ,

(1.3)

where the unknown function to be found is Ψ(Φ), Φb is the potential at the

presheath edge, K0(z) it the modified Bessel function. This is a Fredholm-

type integral equation of the first kind. However, even in the two-scale ap-

proximation the final ion velocity distribution was not calculated for an ar-

bitrary ion source temperature, because the singular kernel of the integral

equation appeared to be inconvenient for numerical computations. In this

thesis we intend to solve this equation exactly and, moreover, to solve the

extended problem that we formulated, i.e., a more “stiff” integro-differential

equation of the form

exp
(

(1 +
τ

2
)Φ
)[

1 + ε2 exp(−Φ)

Ψ3(Φ)

d2Ψ(Φ)

d2Φ

]
= B

∫ Φb

0

Ψ(Φ′) exp
(

(1 +
τ

2
)Φ′
)

K0

(τ
2
|Φ′ − Φ|

)
dΦ′ ,

(1.4)

which is based on the full Poisson equation instead of the quasi-neutrality

condition. This is an integro-differential equation which might be considered

as a generalization of the Fredholm type equations, but it is neither of first

or second kind but, obviously a non-linear one not classified in literature at

all. In the above formulas B is an eigenvalue of the problem while ε and τ

are free parameters.

1.1 Motivation and thesis aims

The author was engaged for a long period of time on exploitation of parallel

computing related to fusion research with a task to optimize European re-

sources. His participation in the EUFORIA project [42, 28] required his deep

involvement in benchmarking some demanding plasma problems. Since the

Bissell and Johnson [10] integral equation was a great challenge for this pur-

pose, he started making his program packages for tackling this problem and

4



1.1 Motivation and thesis aims

we expect the present thesis to contribute considerably to fusion community

in upgrading existing available results.

The problem described above is of high importance to fusion and general

plasmas. In order to employ the fluid codes like SOLPS [15] and EDGE-

2D e.g., designed for simulations of the Scrape-Off Layer (SOL) [18] region

in TOKAMAK devices [64] one has to determine the computational region

boundaries. The boundary condition, however, could not be precisely found

on the basis of fluid theory but kinetic theory should be employed as well. The

results from kinetic theory, which assumes a warm ion population, require

demanding computational resources.

Our examination of the problems with the existing models showed that

approximations taken are not sufficiently accurate as they present somewhat

different results.

We focus our research aims to achieve the following goals:

• The kernel should not be approximated but calculated exactly by using

generic program packages.

• The grid for calculating a potential profile should be refined not only

at the wall of the system, but also in the center of symmetry and a

self-adaptivity of the grid integration should be considered.

• The basic hydrodynamic quantities like ion density, ion out-flux, ion

total energy and temperature should be derived directly from velocity

distribution on a grid which is self-adaptive near the singularities of

the integral kernel as well as near the singularities of the electric field.

• The existing numerical models should be extended to the so-called

“finite-ε ≡ λD/L” case. This means that quasi-neutrality is not strictly

satisfied unless ε is strictly zero.

• Two types of result should be obtained, namely one for a wide spectrum

of ion temperatures with ε = 0 and one for several temperatures with

finite ε.

5



Introduction

Thesis statement.

The problem of a special Fredholm-type integro-differential equation should

be solved numerically without approximations to achieve an extended solu-

tion range applicable to fusion-relevant and general plasmas for an arbitrary

ion temperature and arbitrary finite ε.

1.2 Thesis overview

In this thesis the author presents investigations and results with the following

assumptions:

• The Poisson equation is employed in the whole discharge region.

• A two-scale approximation is obtained just within the limit of the in-

finitely small Debye length in comparison with the system length.

• The ion source-temperature can take an arbitrary value.

• The electron-neutral impact is considered as a ionization mechanism.

Chapter 2 describes physical and theoretical backgrounds of the plasma

and its modeling. Relevant existing collisionless models and their limita-

tions are discussed in Chapter 3. We extend the hot ion source tempera-

ture range of existing models by our analytic-numerical method described in

Chapter 4. The generalization of the existing theoretical models to the finite

Debye length and the extension of our analytic-numerical method are elabo-

rated in Chapter 5. Results obtained by our analytic-numerical method and

our PIC simulations as references are presented in Chapter 6. We conclude

with a discussion in Chapter 7. Supplementary information that aids the

reader or the user our code as well as a Slovenian translation are given in the

appendices.

6



Chapter 2

Physical background of the
problem

2.1 Plasma definition

In the terminology of Ancient Greek philosophy there is the fourth state of

the occurrence of the world, i.e. - fire (besides solid, liquid, and gas occur-

rences). The term plasma, coined almost a century ago by Irvin Langmuir,

corresponds to this philosophy. A plasma is a quasi-neutral gas of charged

and neutral particles which exhibits collective behavior [17]. Ordinary fire

is indeed a plasma but with a very low degree of ionization. Today we are

interested in plasmas in which the degree of ionization is much higher than

in the past (in the range from several to a hundred percent of the degree of

ionization).

In nature plasma occupies the most (more than 99 %) of stellar and

interstellar space of universe [26]. In laboratory plasmas can be produced at

a wide range of pressures and temperatures. This is achieved by transferring

some external energy to the gas leading to its ionization and resulting in

plasmas known as e.g., DC (Townsend) [21] or microwave discharges, diode

plasmas [41], neutral or non-neutral beam produced plasmas etc.

Experience with laboratory plasmas is substantially applied to scientific,

technological and industrial application such as plasma-based lighting de-

vices, electron beam-driven electrostatic fuel and paint injectors, plasma

surface- cleaning and etching, material surface hardening, synthetic diamond

production and plasma thin film deposition for e.g., thin-panel television

7



Physical background of the problem

systems, high-temperature super-conducting film deposition, plasma cutting,

plasma welding, synthesis of materials, toxic waste treatment, water treat-

ment systems, meat pasteurization, medical instrument sterilization, produc-

tion of fullerenes, plasma polymerization, heavy ion extraction from mixed-

mass gas flows, high voltage switches, ceramic powders production, plasma

jet reactive engines, etc...

Qualitatively plasma is the ionized gas consisting of equal number of ions

and electrons the motion of which is determined by collective effects.

The degree of ionization in a gas can be estimated on the basis of Saha

equation

n2
i

n0

=

(
2πmekT

h2

) 3
2

exp

(
−W
kT

)
.

where k = 1.38×10−23 J/K is the Boltzmann constant, h = 6.62×10−34 Js is

the Planck constant, me = 9.109×10−31 is the electron mass, ni is the number

density of ionized atoms or molecules, n0 is the number density of neutral

particles, T is the absolute temperature of the gas, W is the ionization energy

(e.g., the ionization energy is 24.59 eV for He, 15.76 eV for Ar, 14.53 eV for

N, 13.62 eV for O and 13.60 eV for H and only 3.89 for Cs). At the room

temperature this gives an estimation of ni/n0 ∼ 10−123. Obviously, plasma

should be characterized by much higher temperatures, e.g., of the order of

1eV (1eV corresponds to T = 11600K) and higher. Extreme examples are

Cs, where substantial ionization can be obtained even at 0.1 eV (∼ 1000K)

and fusion plasmas with temperatures of the order of 10 KeV , (hundreds of

millions of K).

Quantitatively plasma is the ionized gas with properties as follows.

1. The macroscopic neutrality

ne = ni , (2.1)

is satisfied. In laboratory plasmas, some reference density for a nice

experiment of basic plasma phenomena could be kept e.g., at the order

of 1016 ÷ 1018m−3, while in fusion devices is almost for three orders of

magnitude higher.

8



2.1 Plasma definition

2. Any strong electric field is localized to distance λD, which is short

compared with the characteristic system dimension L, i.e,

λD � L , (2.2)

where

λD =

√
ε0kTe
n0e2

, (2.3)

is the Debye radius. It follows that λD = 7.43× 10−3
√
Te/n where Te

is in eV and n is in m−3, so it can be quickly estimated that λD in both

laboratory and fusion plasmas is of the order of tenths of a millimeter.

3. The density of the particles in the Debye sphere is high

n� 1/λ3
D . (2.4)

4. The characteristic frequency of collective processes i.e., electron oscilla-

tions ωep, is higher than the characteristic frequency of binary processes

ωen with neutrals and ions

ωep > ωen, ωep > ωei , (2.5)

ωep =

√
nee2

meε0
, (2.6)

is the electron plasma frequency. With numerical values of the con-

stant calculated, this is equivalent to ωep = 1.32
√
n, and in laboratory

plasmas this is with reference densities obviously of the order of a tenth

GHz, while in fusion plasmas it is of the order of ten GHz.

νen = nn〈σen(vr)vr〉 (2.7)

is the electron-neutral collision frequency. νen is given as an average

value of the product of collision cross-section σen(vr) and relative ve-

locity vr. The electron–ion collision frequency is

νei =
Z2ne4Λ

ε0
√
me(kTe)3/2

, (2.8)

with Z the number of the ion charges and Λ = ln 4πnλ3
D the Coloumb

logarithm.

Λ = ln
λD

e2/kTe
(2.9)
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Physical background of the problem

Practically plasma is always in contact with the surface – wall. In front of

the wall a special properties of plasmas are established. This region is called

“plasma–wall transition” (PWT) layer.

The problem of the PWT layer is one of the oldest in plasma physics [70,

12]. It plays an important role in various fields of plasma physics and tech-

nology such as fusion devices [64, 17], plasma diagnostics [31] and plasma

processing [41]. However, the physical basis of the PWT is still the subject

of numerous recent investigations. This is due to extreme dificulties of the

problem connected with the nonlinearities and boundary conditions.

2.2 Plasma modelling

Plasma can be described by several theoretical approaches, each of which

gives insight into physical pictures characterizing various particular plasma

phenomena. These models are Single particle motion approximation, fluid

approximation (single fluid and multi-fluid approaches) and kinetic descrip-

tion.

The single particle motion model is limited to particularly rare ionized

gases when we can follow the single particle due to negligibly small inter-

action energy, whereas fluid approximation is applicable only in the case of

a local thermodynamic equilibrium. At the plasma boundaries, fluid ap-

proximation breaks since the velocity distribution function is far from the

equilibrium. The only way to describe plasma near boundaries is to use a

kinetic approximation.

Kinetic approximation can be employed via computer simulations which

calculate iteratively the positions of all particles and self-consistent electric

and magnetic fields originated from particle positions and velocities. This

is an expensive approach which suffers many technical limitations, primarily

originated from a huge number of Newton equations to be solved together

with Maxwell equations. Therefore the numerical calculation method based

on solving the problem without going into details of motion of each particle

may be considered of high interest.

A great benefit to plasma community is to resolve the plasma and sheath

boundary as a transition from plasma quasi-neutrality (plasma region) to

the strong electric field region (sheath region). This can be done via results

10



2.2 Plasma modelling

of the kinetic codes where description of the sheath can be used as reliable

boundary conditions for the fluid codes.

This is especially important for fusion plasmas where ion temperatures are

comparable with electron temperatures. However, up to date there has been

no satisfactory solution to this problem in a wide range of ion temperatures

and no solution for non-negligible sheath thickness. The main task of this

thesis is to resolve this problem for arbitrary value of these parameters.
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Physical background of the problem

2.3 Theoretical backgrounds

Kinetic Boltzmann equation states

v
∂fi
∂x
− e

mi

dΦ

dx

∂fi
∂v

= Si(x, v) , (2.10)

where the ion source term Si(x, v) on the right-hand side is an intricate

function reflecting the relevant microscopic physics involved in the model

of interest, with x the Cartesian space coordinate, v the particle velocity, e

the positive elementary charge, mi the ion mass, and Φ(x) the electrostatic

potential at position x. Considering the electron-neutral impact ionization,

we further present the ion source term as follows

Si(x, v) = Rnnne(x)fn(v) , (2.11)

where R is the ionization rate and fN(v) denotes the velocity dependence of

the neutral VDF.

A formal solution of the Boltzmann equation can be found along the

characteristics in the form

− e

mi

∂Φ

∂x

1

v
=
dv

dx
, (2.12)

where the characteristics are

x′ = x ,

v
′2 = v2 − 2e

mi

(Φ′ − Φ) .
(2.13)

Consequently, the Boltzmann equation is transformed into

dfi
dx′

=
1

v′(x′)
Si (x

′, v′)) , (2.14)

with a formal solution in the form

fi(x, v(x)) =

x∫
0

Si(x
′, v2 − 2e

mi
(Φ′(x′)− Φ))√

v2 − 2e
mi

(Φ′(x′)− Φ)
dx′ . (2.15)
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2.3 Theoretical backgrounds

This can be written in the form independent of the local coordinate x

fi(Φ(x), v) =

x∫
dx′

dΦ′
Si(Φ

′, v2 − 2e
mi

(Φ′ − Φ))√
v2 − 2e

mi
(Φ′ − Φ)

dΦ′

≡
∫
Φ

1

E ′(Φ′)

Si(Φ
′, v2 − 2e

mi
(Φ′ − Φ))√

v2 − 2e
mi

(Φ′ − Φ)
dΦ′

≡
∫
Φ

Integrand(Φ,Φ′, v) · dΦ′ ,

(2.16)

where

E = −dΦ

dx
≥ 0 (2.17)

is electric field. Once we know Φ(x) we can calculate E(x) and consequently

E(Φ) providing the potential profile Φ is a monotonic function of coordinate

x. Secondly, it is necessary to know the source function S(v, x) at each point.

There are three areas of interest.

In real experiment we can measure the potential profile and assume the

source function based on a supposed physical scenario. In (PIC) simulation

experiment we obtain the potential profile after simulating particle motion

based on a Newtonian motion of particles in an electric and magnetic fields

(superposition of both external and self-generated fields due to the particle

position and velocities), providing we assume the source distribution accord-

ing to our taste. Finally, in numerical calculation approach, we also assume

the source distribution according to our taste (see Tonks Langmuir, Emmert

at al. and Bissell and Johnson models in Chapter 3) and then solve analyti-

cally or numerically an integro-differential equation for an unknown potential

or an electric field based on additional assumptions.

Nevertheless, regardless of the procedure how we obtain the data about

the potential profile calculation of the velocity distribution that we present

here is a rather universal one. The essential point is to find the region of

integration of Integrand(Φ,Φ′, v)

In Fig. 2.1 we show the potential profile and the corresponding character-

istic trajectories of various population of particles obtained by a simulation

“experiment” via BIT1 PIC code [74, 38] . This particular example corre-

sponds to ions.
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Figure 2.1: A randomly chosen potential profile calculated in our PIC simu-
lations (a) with corresponding particle trajectory diagram (b).

The method is to “count” the particles with each particular velocity at

any particular place x(Φ) with corresponding potential Φ(x). This is possible

providing the places and velocities of particles originated from the whole

space are known. Then, at any observation place, we know the number of

particles with particular velocity distribution at that place. This is in fact

the final or actual velocity distribution function (VDF) at the observation

place.

First of all, we distinguish between the left and right hand sides of the

system. Depending on the place of their birth and their directional velocity,

ions created on one side of the system can overcome the potential barrier in
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2.4 The trajectory method

the center of the system and be absorbed on the opposite side, otherwise they

will be reflected and accelerated back within their originating half-side of the

system. We plot a separatrix tsx± which is a boundary separating enough

energetic particles from slow ones with a so-called “X-point” at x = 0, v = 0.

2.4 The trajectory method

The velocity distribution at any observation point of the discharge for a

general ion source up to the wall can be obtained by performing an analysis

of the phase space trajectories crossing the observation point from either its

right or its left side, based on the energy conservation v2 + Φ = v
′2

+ Φ
′

=

Const.

Let us now look at Fig. 2.1(a), where the place of the observation is

an arbitrary point, the ion birth places are denoted with prime (′), so an

integration of all the birth places should be carried out.

fi(x, v) =

∫ Φ(x)

Φstart

dΦ′

−E(Φ′)
S(x′, v′)

v′
(2.18)

1. First, we look at the trajectories of particles which pass point x(Φ)

from its right to its left side, i.e., the trajectories of the type between t1
and t2 (including separatrix tsx− and excluding all the particles of type

t3 and other trajectories with insufficient energy to pass from the right

to the left side of the observation point). The contribution of these

particles to the ion velocity distribution is thus

fi(x, v) = H(−v)

∫ Φ(x)

Φw

dΦ′

−E(Φ′)
S(x′, v′)

v′
, (2.19)

where H(x) is the Heaviside step function

H(z) =

{
1 , x ≥ 0

0 , x < 0
. (2.20)

2. Secondly, we look at the particles passing point x(Φ) from its left to its

right, whose place of birth is at the right side of the plane of symmetry
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between separatrices tsx− and tsx+:

fi(x, v) =
[
H(v)H(

√−Φ− v)
]

×
[∫ Φ(x)+v2

Φw

dΦ′

−E(Φ′)
S(x′, v′)

v′

−
∫ Φ(x)

Φ(x)+v2

dΦ′

−E(Φ′)
S(x′, v′)

v′

]
.

(2.21)

Here the first integral belongs to those ions which are born at either

side of point x(Φ) and have a turning point PT , i.e., are born with

negative velocities (the bottom part of the trajectory of type t2), while

the second integral belongs to the ions born with positive velocities

(the upper part of the trajectory of type t2).

3. Finally, we look at the particles passing point x(Φ) from its left to its

right side, whose place of birth is above separatrix tsx+ (type t4)

fi(x, v) =
[
H(v −√−Φ)

]
×
[∫ 0

Φw

dΦ′

−E(Φ′)
S(x′, v′)

v′

−
∫ Φ(x)

0

dΦ′

−E(Φ′)
S(x′, v′)

v′

]
,

(2.22)

where the first integral belongs to those ions which are born at the left

hand side of the plane of symmetry (with enough energy to overcome

the potential maximum) and the second integral considers those parti-

cles which are born with positive velocities in the region between the

plane of symmetry and observation point x(Φ) (no turning point).

Thus we obtain the velocity distribution as a composition of three parts,

i.e., for negative velocities, for velocities between 0 and
√−Φ and for those

greater than
√−Φ. The illustration of the method is shown in Fig. 2.2.

With an explicit source distribution, which, in this work, is assumed to

be Maxwellian, the non-dimensional form of ion VDF is

f(Φ(x), v) = n0B

1∫
0

ds′ exp(Φ′)
exp [−(v2 − (Φ′ − Φ))/Ti]√

v2 − (Φ′ − Φ)
, (2.23)
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Figure 2.2: Velocity distribution function fi for the ion source temperature
Tn = 1.0 at potential position Φ = −0.4 is a sum of 5 integrals. (a) in the
first region H(−v) as described by Eq. (2.19). Secondly, in the bounded
region H(v)H(

√
( − Φ) − v) with (b) the first integral and (c) being athe

second integral of Eq. (2.21). Finally, the remaining region H(
√

(−Φ)− v)
shows: (d) the first population, and (e) the second population of Eq. (2.22).
The sum of all integrals (2.19-2.22) smoothly combines (f) the complete ion
velocity distribution function fi.
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where

s′ = x′/L , (2.24)

f =
fi√

mi/2kTe
and (2.25)

B =
1

2π

√
Temi

Time

n0

ne,av

exp(Φw) . (2.26)

The velocity distributions at various points x(Φ) for the cases of an analyt-

ically solved problem of the zero ion source temperature, a very small ion

source temperature and a rather high source temperature Ti = Te will be

shown in Results.

2.5 Moments of the velocity distribution func-

tion

The moments of velocity distribution are fluid quantities which are obtained

as an infinite series of integrals
∫∞
−∞ v

jfi(v)dv, where j = 0, 1, 2, . . . . Such

quantities are e.g.: the ion density

ni(Φ(x)) =

∫ ∞
−∞

fi(v)dv , (2.27)

the ion flux

Γi(Φ(x)) =

∫ ∞
−∞

vfi(v)dv , (2.28)

the ion total energy

Ki(Φ(x))) =
1

ni(Φ)

∫ ∞
−∞

v2fi(v)dv , (2.29)

ion directional velocity

ui(Φ(x)) =
1

ni(Φ)
Γi(Φ) , (2.30)

and the ion temperature

Ti(Φ(x)) = Ki(Φ)− u2
i (Φ) , (2.31)
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2.5 Moments of the velocity distribution function

as well as all higher moments like heat flux, energy flux etc at any location.

On the other hand, the Poisson equation states:

− d2Φ

dx2
=

e

ε0

(ni − ne) , (2.32)

where ε0 is the vacuum dielectric constant and ni, ne are the ion and electron

densities, respectively.

In non-dimensional form the space coordinate is normalized to a suitable

characteristic length ` of the plasma, i.e., the physical extension L of the sys-

tem or the ionization length`. In the present investigation, we are interested

primarily in fusion plasmas, where ` or L is much larger than the Debye

length λD.

At this point we introduce the normalized quantities of interest as follows:

eΦ

kTe
→ Φ ,

miv
2

2kTe
→ v2 ,

x

L
→ x ,

ni,e
ne0
→ ni,e ,

Tn
Te
→ Tn ,

Ti,src
Te
→ Ti,src ,

Ti
Te
→ Ti ,

√
2cs0fi
ne0

→ fi , SiL→ Si .

(2.33)

where cs0 ≡
√
kTe/mi and L is any characteristic length of the system, (usu-

ally, the half-length of the plane-parallel discharge). Let us note that in the

articles by B&J and S&E both normalized quantities Ti and τ ≡ 1/Ti are

used in parallel, while we prefer to avoid τ wherever possible. Moreover, in

our notation Tn is the neutral temperature, which is identical to the ion-

source temperature Ti,src. In the work of B&J, this temperature was denoted

as Ti leading to serious confusion. In fact, the final ion velocity distribution

function (VDF) turns out to be very different from the initial one. As an

obvious example of such confusion, B&J defined in their work [Eq. (8)] the

ion-sound velocity containing in fact the neutral temperature instead of the

real (effective) ion temperature as should be calculated from the ion veloc-

ity distribution. So their Eq. (8) turns out to be inappropriate emerging

from confusion notation only. To avoid such problems we use the notation

Ti,src ≡ Tn for the ion source temperature, and Ti will be exclusively reserved

for the final effective ion temperature as calculated from the final velocity

distribution function.
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Throughout the text we will use either non-normalized or normalized

quantities. To avoid any possible confusion we will state explicitly in each

case which of them is used in a given context. Additional normalized quan-

tities will appear later in a natural way.

Since we assume that the potential profile Φ(x) is monotonic, so that the

inverse function x(Φ) is monotonic as well, the mathematical rule: d2y/dx2 =

−(d2x/dy2)/(dx/dy)3 holds. The Poisson equation [Eq. (2.32)] in normalized

variables thus reads

∫ fi(Φ, v)dv = ne + ε2 d
2x/dΦ2

(dx/dΦ)3
. (2.34)

Esq. (2.34) and (2.16) provide a complete description of the finite-ε discharge.

The central quantity of interest is obviously inverse electric fielddx/dΦ. Once

this quantity is found, the ion VDF can be calculated self-consistently from

Eqs.(2.34) and Eq (2.16), depending on the assumption of vanishing or non-

vanishing ε respectively. Then, the moments of the VDF can be calculated

as functions of the potential Φ or, equivalently, of the position x.

Once a numerical solution of the system (2.34) and (2.16) is obtained,

it is straightforward to calculate the ion velocity distribution and all their

moments i.e. density (n =
∫
f(v)dv), directional velocity (u = 1

n

∫
f(v)vdv),

and ion temperature T =
∫

1
n
f(v)(v − u)2dv and all higher moments like

heat flux, energy flux etc. at any location.

The special quantity of our interest is the polytropic coefficient γi(x) (or

equivalentlyγi(Φ)), which can be found by using the expression

γi = 1 +
ni
Ti

dTi
dni
≡ 1 +

ni
Ti

dTi/dΦ

dni/dΦ
(2.35)

with previously calculated moments of the ion VDF.
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Chapter 3

Overview of existing models

3.1 Basic considerations on the two-scale model

Φ

X

plasma solution

exact solution

sheat solution

Figure 3.1: Symbolic picture illustrating the two-scale approximation.

The quasi-neutrality condition assumes the exact equality of ion (ni) and

electron (ne) densities in a defined region of interest. The most common as-

sumption is that the electrons are Boltzmann distributed, i.e., their velocity

distribution is implicitly assumed to be Maxwellian. The ion velocity distri-

bution is unknown and can be calculated from the quasi-neutrality condition∫
fi(x, v)dv = n0 exp

(
eφ

kTe2

)
(3.1)

This is an integral equation for unknown ion velocity distribution fx,v. Find-

ing a solution requires additional considerations and assumptions which are

based on the Boltzmann equation (2.10).
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3.2 Tonks-Langmuir model

Tonks and Langmuir started out with assumptions that the ions are born at

rest, i.e., with zero initial velocity at any point of discharge (cold ion-source

case). Under this assumption the source term can be written in the form

Si(x, v) = si(x)δ(v) , (3.2)

where δ(v) is Dirac’s delta-function. Considering δ(v2) = δ(v)
2v

in this case the

solution takes the form

fi(x, v) = 2

∫
si(x

′)δ
(
v′2 − 2e

mi

(φ′ − φ)

)
dx′

dφ′
dφ′ . (3.3)

Since only monotonic potential profiles were of interest the last equation

takes form

fi(φ, v) = 2

∫
si(φ

′)δ
(
v′2 − 2e

mi

(φ′ − φ)

)
dx′

dφ′
dφ′ =

=
mi

e
si(φ

′)

∣∣∣∣dx′dφ′

∣∣∣∣
eφ′=eφ+

miv
2

2

,
(3.4)

wherefrom we conclude that the ion distribution function at the place of

observation depends only on the place of their generation. That means that

the ion energy at the place of observation is equal to the potential at that

place

eφ′ =
miv

2

2
+ eφ = Ei , (3.5)

so the velocity distribution function

fi(φ, v) =
mi

e
si(Ei)

∣∣∣∣dx′dφ′

∣∣∣∣ = fi(Ei) (3.6)

depends only on the ion energy

fi(φ, v) = fi(Ei) . (3.7)

Due to the cold-neutral assumption ions move exclusively in the positive

direction of the x-axis (in the electric field direction). The ion with the kinetic

energy mv2/2 and the potential energy eφ(x) at point x is originated from

the ionization process at x′ with the potential φ′ = φ(x′). For the velocity

22



3.2 Tonks-Langmuir model

interval necessary for the integration of the distribution function and to find

the ion density we thus have

0 ≤ v ≤
√
−2eφ

mi

. (3.8)

Further we have to introduce energy Ei

Ei =
miv

2

2
+ eφ(x) (3.9)

as a new variable, then the quasi-neutrality condition ni = ne(x) can be

represented in the form

0∫
eφ(x)

fi(Ei)dEi√
2mi(Ei − eφ)

= n0 exp

(
eφ(x)

kTe

)
. (3.10)

This is and integral equation for the ion distribution function of the form

x∫
0

S(x′)√
x− x′dx = g(x) . (3.11)

From (3.11) it follows

x∫
0

dx′√
x− x′

x′∫
0

S(x′′)dx′′√
x′ − x′′ =

x∫
0

g(x′)dx′√
x− x′ . (3.12)

Changing the ordering of the integration by means of equality

x∫
x′′

dx′√
(x− x′)(x′ − x′′) = π , (3.13)

we find

f(x) =
1

π

d

dx

x∫
0

g(x′)dx′√
x− x′ . (3.14)

Hence according to (3.13) and (3.14) we have

fi(Ei) =
1

π

√
2min0

d

d|Ei|

|Ei|∫
0

e−
|Ei|−z
kTe dz√
s

, (3.15)
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which yields definitely

fi(Ei) =
n0

π

√
2mi

kTe

[√
−kTeEi − 2F

(√
− Ei
kTe

)]
, (3.16)

where F (y) denotes the Dawson function:

F (y) = exp(−y2)

∫ y

o

exp(y′2)dy′ . (3.17)

Since the ion velocity distribution function is always positive the total energy

is restricted to

− Ei < Eo ≈ 0.854 kTe , (3.18)

where Eo is solution for the case fi(Ei) = 0. In the most restrictive case of

the spectrum of ion velocities v = 0 the condition

eφ

kTe
>
e∆φb
kTe

= −0.854 (3.19)

emerges. According to (3.6) the limiting case ∆φb is the point where quasi-

neutrality breaks, i.e., the electric field for this value becomes infinite.

The potential profile now becomes

x(φ) =
n0

π

√
2kTe
mi

− eφ
kTe∫

0

1

si(y)

[
1√
y
− 2F (

√
y)

]
dy . (3.20)

In the case when ionization is homogeneous the last expression is simple

x(φ) =
2n0

siπ

√
2kTe
mi

F

(√
− eφ

kTe2

)
. (3.21)

3.3 Emmert et al.’s model

Instead of using the Dirac function for the ion source Emmert et al. [22]

constructed such an artificial warm ion source that the solution of plasma

equation yields the desired form of Maxwellian. With their ion source they

were able to solve this rather exotic case analytically.
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3.4 Bissell-Johnson model

Bissell and Johnson [10] (B&J) started from a realistic Maxwellian ion source

velocity distribution. In this case there is only hope of reasonable approx-

imations to obtain an analytic solution. With this in view, they used the

numerical computational method. The problem appears to be very daunt-

ing. They approximated the kernel of the integral equation and obtained the

solution in a limited range of ion temperatures.

The procedure of Bissell and Johnson model is to apply the strict quasi-

neutrality ni = ne, where

ni =

+∞∫
−∞

fi(x(Φ), v)dv =
∑
I

v2∫
v1

dv

b∫
a

Si

(
v2 − 2e

mi
(Φ(x′)− Φ(x))

)
√
v2 − 2e

mi
(Φ(x′)− Φ(x))

dx′ (3.22)

and the electron velocity distribution is Boltzmannian, i.e.,

ne(x) = ne0 exp

(
eΦ(x)

kTe

)
. (3.23)

The summation on the right-hand side of (3.22) describes the contributions to

ni(x) from sources in different regions of the plasma – the limits of integration

vary with the position and speed of the source particles. A similar procedure

has already been used in the Section 2.3.

Bissell and Johnson also supposed that the source distribution is Maxwellian,

i.e.,

S(x, v) = Rnnne(x)

√
mi

2πkTi
exp

(
−miv

2

2kTi

)
, (3.24)

where Ti is the ion source temperature.

The B&J model physically means that they supposed that ions are cre-

ated from single electron-neutral impact ionization. Other models will be

presented below.

With the above supposed ion source in [10] an integration over the velocity

and the summation of sources in different regions of plasma are performed.

The result is

ni(x) =

√
mi

2πkTi
LRnnne(x)

×
ψb∫

0

dψ′
dx′

dψ′
exp(ψ′ − ψ) exp

[τ
2

(ψ′ − ψ)
]

K0

[τ
2
|ψ′ − ψ|

]
,

(3.25)
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where

ψ =
eΦ

kTe
, ψb =

eΦb

kTe
, τ =

Te
Ti

, (3.26)

K0(z) is the modified (hyperbolic) Bessel function [2] and Φb is the potential

at the presheath boubdary.

The ion flux is given by the continuity equation

dΓi
dx

= Rnnne(x) , (3.27)

which after athe integration takes the form

Γi = Rnn

∫ L

0

nedx ≡ Rnnne,av , (3.28)

at the presheath boundary (λD << L). In (3.28) ne,av represent the mean

value of the electron density over the system.

The electron flux for Maxwellian distribution at a wall is given by

Γe =

√
kTe

2πme

exp(Φw) . (3.29)

The most “standard” assumption in collisionless discharge models is that

the ion and electron fluxes at the wall are equal, so there is no electric current

(Γi = Γe). In the present case, this “floating wall” condition yields

LRnn =
n0

ne,av

√
kTe

2πme

exp(Φe) . (3.30)

With this condition the ion density becomes

ni =ne(x)

√
mi

2πkTi

n0

ne,av

√
kTe

2πme

exp(ψw)

×
ψb∫

0

dψ′
dx′

dψ′
exp(ψ′ − ψ) exp

[τ
2

(ψ′ − ψ)
]

K0

[τ
2
|ψ′ − ψ|

]
.

(3.31)

Since quasi-neutrality condition ni = ne is assumed this expression reduces

to

1

B
=

∫ ψb

0

dψ′
dx′

dψ′
exp(ψ′ − ψ) exp

[τ
2

(ψ′ − ψ)
]

K0

[τ
2
|ψ′ − ψ|

]
. (3.32)
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where for shortness’ sake B&J denoted

B =
1

2π

√
τmi

me

n0

nav
exp(φw) . (3.33)

With above assumptions the only unknown quantity is the electric field

E = −
(
dx

dψ

)−1

. (3.34)

Eq.(3.32) is a singular integral equation with a logarithmic singularity.

Solving the above defined problem is very demanding from both theoretical

and numerical points of view. B&J made next steps:

• The Bohm criterion is used as the boundary condition to the quasi-

neutrality equation.

• The kernel of the integral equation is approximated in a limited range

of validity.

• Value B is calculated self-consistently as an unknown.

• The wall potential and moments of the velocity distribution at the

plasma-sheath boundary are calculated.

B&J used a switch function

J(Φ′−Φ) = exp[τ(Φ′−Φ)]{1−tanh[(Φ′−Φ)/ε]}/2+{1+tanh[(Φ′−Φ)/ε]}/2 ,
(3.35)

reduced the main equation to the form

1

B
=

Φb∫
0

dΦ′Ψ(Φ′)F (Φ′ − Φ) (3.36)

with

F (θ) = J(θ) exp(θ) exp(
τ

2
|θ|) K0(

τ

2
|θ|) , (3.37)

and applied an intricate mathematical procedure which assumes an approxi-

mation of such a kernel via a Chebyshev polynomial series yielding a system

of linear equations. They claimed that their approximation is more or less

valid in the narrow range of Ti between 0.5 and 4. We repeated their deriva-

tions and in Fig. 3.2 we plot their kernel approximation with our repeated
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Figure 3.2: A comparison of the kernel F (θ) approximation of the B&J
equation (left, dashed), our approximation (right, dashed) and the exact
kernel (solid) for various values of τ = Te/Ti. The approximation error
increases with higher τ ’s. While our approximation is better near θ = Φ′ −
Φ = 1 it is still evident that errors at the center are significant and cannot
be lowered with a polynomial approximation of order 8. In the left figure we
show the comparison of the results obtained for τ = 0.25, 0.33, 0.5, 1.0, 2.0,
while in the right figure we also added results for τ = 0.1, 4.0, and 8.0

results where we have taken into account that there were certain mistakes in

polynomial coefficients.

The kernel of the B&J equation is shown in Fig. 3.2 for various values

of parameter τ . Following their approach we calculated a tighter kernel

approximation. Nevertheless, one can notice differences between either ap-

proximation and the exact kernel. Their approach is a specific one and the

system of linear equations to be solved is closely related to the approximation

that they used.

B&J concluded from derived quantities that the approximation to the ker-

nel of the plasma equation for Te/Ti > 2 was too poor to be used. However,

the range of validity of the kernel is too narrow for both plasmas charac-

terized with small and high enough ion source temperatures for, e.g., fusion

application.
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3.5 Scheuer-Emmert model

3.5 Scheuer-Emmert model

Scheuer and Emmert [61] (S&E) used a better kernel and another numerical

computational approach. They extended the range of validity of solution but

it still remains constrained up to certain ion temperatures.

The model by Emmert et.al. [22] is a full solution of both plasma and

sheath regions. Their solution is analytic and it is valid for arbitrary ion

temperatures. Unfortunately, their ion source is an artificial one arranged in

advance to be integrable with the analytic method and to give the desired

result. Nevertheless, this approach is not meaningless. As they wanted to

have the final Maxwellian distribution only at the center of the system and

to obtain its shape towards boundaries. This is close to the physical scenario

where the ions move towards the divertor plate in the tokamak SOL. Far

from the divertors their velocity distribution probably can be regarded as

Maxwellian irrespective of the ion source distribution, which is anyhow a

rather uncertain unknown in real experiments: during the observation in the

SOL region one could perhaps measure the final velocity distribution, but its

source can be only a matter of speculations.

As discussed with the B&J model, the ion source velocity distribution

is Maxwellian and the final velocity distribution is to be calculated with

the numerical method since any analytic attempt is not expected to yield

results. In addition, unlike the Emmert et al. model, which is valid in both

sheath and quasi-neutral regions, in the B&J model strict quasi-neutrality is

assumed, and the sheath potential profile is not calculated.

Scheuer and Emmert started out from the B&J model, rewriting their

result (3.32) in the form

1

B
=

∫ 1

0

exp
[
1 +

τ

2
(Φ− Φ′)

]
K0

[τ
2
|Φ− Φ′|

]
ds′ (3.38)

with

ψ = −eΦ(s)

kTe
, ψ′ = −eΦ

′(s′)
kTe

, (3.39)

B =
1

2π

√
τmi

me

n0

nav
exp(Φb) , s =

x

L
, (3.40)

The differences between the S&E and B&J approaches are as follows
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• Quantity B appears to be a free parameter to be changed depending

on, e.g., the ion to electron mass ratio for the fixed ion temperature.

• S&E made a better approximation of the kernel in the integral equa-

tion, which covers the cases of arbitrary high τ (or equivalently, ar-

bitrary small ion temperatures). The new kernel approximation still

remains valid for small τ (high enough ion temperatures as compared

with electron temperatures).

• S&E (unlike B&J) calculated the plasma potential a posteriori and

did not apply any kind of Bohm criterion in advance but they have

demonstrated that this criterion indeed holds with a high degree of

accuracy.

• S&E used different normalization [Eq. (3.39)] that reverses the sign of

the potential profile in comparison with that of B&J (see Fig. 6.2).
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Chapter 4

Analytic-Numerical method

In our work we follow the approach adopted by S&E, we have, however,

improved it using

• the exact kernel,

• with a much better resolution of the computational grid,

• employing high grid refinements on both the zero and the infinite elec-

tric field side of the discharge,

• with implementation of additional stabilizing terms that improve con-

vergence.

Following the “trick” applied by Scheuer and Emmert we introduce iden-

tity

1/B ≡ exp(φ0) (4.1)

so Eq. (3.38) takes the form

exp(φ0) =

∫ 1

0

exp

[(
1 +

1

2Tn

)
(φ− φ′)

]
K0

(∣∣∣∣φ− φ′2Tn

∣∣∣∣) dx′ , (4.2)

where a simple formal identity φ − φ′ = Φ − Φ′ = (Φ − φ0) − (Φ′ − φ0) is

introduced. Equation (3.38) can be rewritten into

exp

[
−
(

1 +
1

2Tn

)
φ

]
= exp(−φ0)

∫ 1

0

exp

[
−
(

1 +
1

2Tn

)
φ′
]

K0

(∣∣∣∣φ− φ′2Tn

∣∣∣∣) dx
(4.3)
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or, after taking logarithms of both sides into a form conducive to a numerical

procedure

(
1 +

1

2Tn

)
φ = φ0 − ln

[∫ 1

0

exp

[
−
(

1 +
1

2Tn

)
φ′
]

K0

(∣∣∣∣φ− φ′2Tn

∣∣∣∣) dx′] ,

(4.4)

with K0 being the zeroth order modified Bessel function of the second kind

which is singular at every x′ .= x. The unknown function of interest φ(x),

which is integrated over a normalized interval, also includes a known high

gradient at x = 1, while at x = 0, due to symmetry it is expected to have a

zero gradient.

We can first look for a solution of Eq. 4.4 without the unknown additive

constant φ0. Once this solution is found, the additive constant is simply

calculated from the vertical shift of the solution. Quantity B (related to the

source strength) in our algorithm is calculated and iterated at each loop.

We start from Eq. (3.38) that is discretized over interval x = [0, 1] with

a varying density of sample points xi. For a subsequent purpose of derived

quantities like dx/dΦ a dense grid near zero is needed. The location of the

i-th position at the grid is given by

xi =

[
1−

[
1− i

N − 1

]λ2
]λ1

, (4.5)

for index range i = 0, 1, . . . , N − 1, which covers x range of interest for N

points. The grid density near zero is controlled via λ1, while λ2 controls the

density near x = 1. Practical values for λ1 and λ2 range from 2 to 3 for grids

with N ≥ 1000 points. It should be noted that the grid density approaching

x = 1 is extremely high and that an equivalent interval density can be as

high as 108 points. Fig. 4.1 shows a zoom-in on the right hand side of Fig. 6.1

for Tn = 1.0

For function Φ(x) discretized at points xi and break into N − 1 intervals

piecewise-linear profiles are assumed. The interpolating function V (x′) over

each interval can be evaluated with

V (x′) = Vi +
Vi+1 − Vi
xi+1 − xi (x

′ − xi) , xi ≤ x′ ≤ xi+1 , (4.6)
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Figure 4.1: Zoom-in of the potential profile Φ(x) of the high density grid
for Tn = 1 shows numerical approximation of the infinite potential when
approaching x = 1. See Fig 6.1 for a complete potential profile for ε = 0
case.

where Vi represents discrete function value Vi = Φ(xi). In a discrete form

Eq. (4.4) is rewritten into

exp[(1 +
1

2Tn
)Vk] =

B
N−1∑
i=0

∫ xi+1

xi

dx′ exp[(1 +
1

2Tn
)V (x′)] K0

(
1

2Tn
|Vk − V (x′)|

)
.

(4.7)

The right-hand side of Eq.(4.7) can be abbreviated and formulated in the

iterative form as

Vk =
1

1 + 1
2Tn

ln(B
N−1∑
i=0

Li), (4.8)

where Li represents the integral over each interval that should be evaluated

for every index i at position k. The method applied can be considered as a

fixed-point iterative method [19] with N nonlinear equations.

A careful investigation of plasma equation (4.7) that has the property of

monotonicity reveals that for each position k there are at the most two neigh-

boring intervals that lead to the singularity of the Bessel function. These

singular intervals with integrable singularity at the boundary can be numer-

ically solved with adaptive quadrature integration algorithms [23, 24]. The
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remaining intervals should not impose any numerical difficulties and can be

solved with a non-singular quadrature formula over each interval. Note that

this is not completely true and that observing Eq.(4.6) one can see that on

condition Vi+1 − Vi ≡ 0 additional singularity might arise, if monotonicity

is not strictly maintained over the whole interval [0, 1]. Especially intervals

near zero are prone for such singularities. Another observation of a numeri-

cal nature that might arise in Eq.(4.6) can be observed with high gradients

approaching x = 1 and dense intervals that can lead to unstable discrete

derivate ci = (Vi+1 − Vi)/(xi+1 − xi) found in Eq. (4.6).

These observations should be carefully considered when integrating Eq.

(4.7) fully numerically at every k. One can also conclude that the chosen λ1

and λ2 as grid parameters have indirect influence on the presence of numerical

instabilities and the presence of singularities that should be avoided as much

as possible.

The formula (4.8) where the right-hand side of equation evaluates to new

Vk is mathematically exact, but can only be applied when all Vk are perfectly

accurate. With Vk → Vl on the left-hand side of Eq.(4.8) and additional soft-

step parameter α one can get an iterative algorithm for new Vk values with

V new
k = Vk + α(Vl − Vk) (4.9)

While the method (4.9) converges, it does so very slowly. The practical

values for α are from 0.0001 to 0.1 and are dependent on initial solution and

grid parameters. Large α’s are prone to oscillatory behavior that starts at

points near x = 0.

To speed up the computation, one can first compute an approximation on

a coarser grid and gradually lower α when interpolating to the dense grid. An

alternative approach when changing Tn is to start with an already converged

solution for nearby Tn. The initial solution is recommended, although not

required, to be as close as possible to the final solution. We suggest the

following monotonous initialization function

Vk = 0.5(1− exp(k/N)) , k = 0, 1, . . . , N − 1 , (4.10)

disregarding λ1 and λ2.

To stabilize the convergence we introduced two additional vanishing a

posteriori regularization operations on Eq.(4.9) that are based on the known

34



solution smoothness. A simple Laplacian-like smoothing technique with

smooth-step parameter β similar to Eq.(4.9) is employed as

V new
k = Vk + β

[
Vk−1 + Vk+1

2
− Vk

]
, k = N − 1, N − 2, . . . , 1 . (4.11)

Choosing β ≤ 1 stabilizes the convergence and should be gradually lowered

to zero when the solution stabilizes. After observing the nature of instabil-

ities, we found out that oscillatory behavior starting at x = 0 propagates

throughout the mesh. To prevent this, we enforced a parabolic interpolation

for the first m points that are rewritten with

Vk = ax2
k + bxk + c , k = 0, 1, . . . ,m (4.12)

a =
Vl − Vm
x2
l − x2

m

, b = 0 , c =
x2
l Vm − x2

mVl
x2
l − x2

m

,

where mesh point xl is chosen at l = 3/4m. The length of the rewritten

profile can be up to xm < 0.1 and gradually lowered when approaching the

final solution. Constant B is unknown during the iterative procedure and as

shown in Eq.(4.4) influences the shift of the solution. From Eq. (4.7) B can

be expressed as

B =
exp[(1 + 1

2Tn
)Vk]∑N−1

i=0 Li
, (4.13)

with Vk being the old value, while Li are next iteration zone integrals. Con-

stant B should hold at every grid point. As an eigenvalue, B does not have

a major impact on convergence. Similarly to other smooth step parameters,

B should also be adjusted with soft-step of 0.005, calculated from the central

grid point. Our experiments shown that initial B = 0.3 can be used for all

cases.

The iterative process can be summarized through the following steps:

1. Set up B and grid positions using Eq.(4.5).

2. Create the initial solution with Eq.(4.10) or initialize the function pro-

file with the nearest previous solution, if existent.

3. For every grid position calculate the sum of integrals Vk using equation

(4.8).
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4. Move function values Vk into a new position with a soft-step strategy

(4.9) using step size α in the range [0.0001, 0.1].

5. Stabilize the convergence with additional smoothing of the curve with

(4.11) that prevents the oscillatory behavior of the solution. Similarly

to Eq.(4.9) the step size should vanish as the solution approaches a

stable form.

6. Prevent oscillations near x = 0 with a parabolic rewrite of the potential

profile for all points with xm < 0.1. Use Eq.(4.12) for the coefficients

of the parabolic interpolation.

7. Calculate B using Eq.(4.13) and correct its value for 0.005 of the dif-

ference between new and old B.

8. Repeat the iteration from Step 3 following the solution quality criteri-

ons while gradually lowering the smooth-step and the parabolic inter-

polation range.

The stopping criteria for the iteration procedure cannot be simply ex-

pressed with a measure like the quadrature norm between the iterations.

One of the most important convergence indicators is a potential at x = 1.

During the convergence one should observe the curve properties near x = 0,

where the parabolic interpolation ends. Potential VN−1 at x = 1 can also

behave oscillatorily, with a convergent amplitude.

The number of iteration steps depends on a number of factors and can

range from 2000 to 100000. The most influential is the soft-step size that

should be as high as possible. Setting the soft-step too high produces un-

desirable oscillations at the beginning of the potential curve that cannot be

easily rescued once they appear. The strategy for lowering smooth-step β

and the parabolic interpolation is that, firstly, one should have a convergent

solution and then smoothly lowering both parameters that should vanish for

the final solution. Fig. 4.2 shows the described scenario with both parame-

ters lowered, while monitoring the convergence, i.e. without the oscillatory

nature through all computational area.
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Figure 4.2: Convergence for Tn = 1 showing the last point of grid Φs. Gradu-
ally lowering smooth step and parabolic rewrite took about 500000 iterations
and nearly 1 week of 8 core Intel Xeon 2GHz CPU time.

4.1 Implementation aspects

The implementation of the above-described approach was verified and coded

in Mathematica and the C language using the GSL [25] scientific library

for special functions and integrations. Most notable here is the Bessel K0

function with a relative error under η < 10−10 in a wide range as shown in

Fig. 4.4. The upper limit for double machine precision K0 obtained with

this experiment is approximately 600 which is an imposed limit of our code

in C on commodity computer architectures. For the numerical integration

in zones we used our long double extension of QAG and QAGS quadrature

algorithms that adaptively bisects the integration into subintervals until the

given relative error limit is achieved. The integration of non-singular zones

applies the Gauss-Kronrod 21-point integration rule while for singular zones

results are extrapolated using the epsilon-algorithm. For more details consult

Ref. [45].

While Mathematica was our first choice to prove some convergence ex-

periments, it was soon clear that the problem would be time-consuming and

that C code would require parallelization for reasonable proof of the concept.

The number of integral evaluations is directly connected to the number of

grid points N . We estimate a practical limit for Mathematica up to 200

points.

Our C code uses shared memory model parallelization with OpenMP [16,
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Figure 4.3: Relative error of the Modified Bessel function with polynomial
approximation used in the S&E approach is minimized within range [0, 2]
while using such approximation for x > 2 is not viable.
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Figure 4.4: Relative error of the Bessel K0 in the GLS library used in our
approach shows relative error η < 10−10 in a wide range.
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47] approach. It seems that it is not practically time-bound by a number

of intervals, but rather by precision limits that are imposed with a numeric

model and machine precision.

We used long double precision for the numeric model wherever possible.

Due to high gradients and the desired high grid we extended GSL library

integration routines that exist only for double precision to long double.

The upgrade consists of the modification of 43 source code files. As this

can also be considered as a contribution to the Open source community, we

submitted this patch for consideration in the future versions of GSL.

The practical number of points that enabled us to derive results was 1600.

The required extremely high refinements on both sides of the domain are also

sources of instabilities that need a special treatment with regard to precision.

One must take care that the overall precision of the zone integration results

within the high grid density is not violated. The relative error for QAG

and QAGS algorithms was set to 10−6 with a maximum number 20000 of

workspace for adaptive subintervals.

In our code, we implemented result caching mechanism that enabled us

to experiment with parameters, so we could roll back in the presence of

instabilities. Once a case is evaluated it is relatively fast to move to the

nearby temperature. Depending on the solution criteria, the computational

time on 8 core dual Xeon 2GHz CPU can range from one hour to one week.

A helpful time-saving approach can be re-grid from/to low/high grid density.

Most of our computations as presented in the following chapters were

obtained utilizing resources of the supercomputing center at the University

of Innsbruck. Cluster consists of 48 Opteron machines (a total of 232 cores)

with 2 to 16 cores with CentOS.

A careful study of loops that can be parallelized and their balancing

improved overall scalability from 80% to nearly 100% according to Amdahl’s

law as shown within systat in Fig. 4.5 and top in Fig. 4.6.

The GSL library for QAG(S) integration routines requires one to pre-

allocate sufficient workspace for adaptive refinement of the quadrature rules.

Allocation of this temporarily space should be taken out of the loops to

prevent cyclic allocation/deallocation, whereas taking into account that each

thread will receive separate workspace.

Details on the code input parameters with the XML schema are elabo-

rated in Appendix B.
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Figure 4.5: Utilization of 8 core dual Intel Xeon(tm) 2GHz CPU on the
FreeBSD OS. Up to 80% were achieved in the early versions of the code.

top - 01:46:01 up 3 days, 8:23, 1 user, load average: 15.84, 10.29, 4.53

Tasks: 181 total, 2 running, 179 sleeping, 0 stopped, 0 zombie

Cpu0 :100.0% us, 0.0% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu1 : 99.8% us, 0.2% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu2 : 99.8% us, 0.2% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu3 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu4 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu5 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu6 : 99.8% us, 0.2% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu7 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu8 : 99.5% us, 0.5% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu9 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu10 : 99.5% us, 0.2% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu11 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu12 : 88.9% us, 0.5% sy, 0.0% ni, 10.6% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu13 :100.0% us, 0.0% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu14 : 99.5% us, 0.2% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Cpu15 : 99.8% us, 0.0% sy, 0.0% ni, 0.2% id, 0.0% wa, 0.0% hi, 0.0% si

Mem: 32912464k total, 352616k used, 32559848k free, 102496k buffers

Swap: 8385888k total, 0k used, 8385888k free, 134864k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

2827 c705185 15 0 77108 3236 2108 S 0 0.0 0:00.18 xterm

3838 sgeadmin 16 0 59608 3236 1640 S 0 0.0 25:55.90 sge_execd

2981 c705185 18 0 121m 3100 1532 R 1586 0.0 79:19.08 ppgplasma

3967 root 16 0 15416 2684 1252 S 0 0.0 1:27.61 hald

Figure 4.6: Utilization of 4 × Quad-Core AMD Opteron(tm) 8356 @2.3GHz
node with the CentOS shows that optimized code achieved nearly linear
scalability.
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Chapter 5

Extension of the theoretical
model

Here we present a new approach how to solve the equation for the plasma-wall

transition layer with the arbitrary function for the ion source. This problem

is an old one which assumes solving an integral equation of the Fredholm

type or, alternatively, the Volterra type with a particular bell-shaped kernel.

Due to mathematical difficulties with such physically very important kernel

choice its shape was in the past approximated in several ways yielding ap-

proximate numerical solutions. Unfortunately, these solutions are valid only

in limited ranges of ion temperatures. In our approach we work with the

exact kernel, so we can obtain results which are, in principle, of arbitrary

precision within an arbitrary range of the ion source temperatures. A pre-

cise solution of the plasma equation with a finite temperature ion-source is

extremely important in determining the plasma parameters at the plasma

sheath boundary. We obtain the ion velocity distribution at an arbitrary

point in a plane-parallel discharge, which also allows for the calculation of

its moments (density, temperature and higher order moments) at the edge

of the system, where boundary conditions for a discharge should be known

with a high degree of accuracy.

5.1 Basic considerations

The Tonks-Langmuir [70] problem of collisionless discharges is a rather old

and particularly basic one but, unfortunately, solved only under various as-
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Extension of the theoretical model

sumptions which facilitate getting the solution but restricting its range of

validity to particular types of application. A general mathematical formula-

tion of the problem can be expressed as a task to find function Ψ(Φ). Our

mathematical formulation of the problem can be expressed in the form of a

rather general integro-differential equation

ε2n(Φ)
1

Ψ3

dΨ

dΦ
= 1− λ

∫ Φ

0

Ψ(Φ′)K (τ(Φ′ − Φ)) dΦ′ (5.1)

with a prescribed singular kernel K, prescribed function n(Φ), arbitrary pa-

rameters ε and τ and the eigenvalue of the problem λ (Physical backgrounds

and derivations will be elaborated in detail in the next sections). Due to

mathematical difficulties and lack of numerical and computational resources

during the last 80 years the problem has been tackled either for one or for

both vanishing ε and τ . In a series of works the author of the present thesis

is making attempts to obtain a reliable solution of the problem without any

limitations mentioned above.

Tonks and Langmuir recognized that plasma and sheath problem can be

split into so-called “plasma approximation,” with strict quasi-neutrality as-

sumed, and “sheath approximation,” with the electric field taking the role.

The corresponding two regions of the plasma-wall transition layer are often

called as “the presheath” and “the Debye sheath”. They found approximate

solutions for these two regions for plane, cylindrical and spherical geometries.

Their “intuitive” approach of splitting the plasma-sheath equation into two

parts was later put into a rigorous mathematical context by Caruso and Cav-

aliere [14], who employed for this purpose van Dyke’s boundary layer theory.

This approach to plasma physics is now well known as the “two-scale” ap-

proximation. Following this approach Harrison and Thompson (H&T) [29]

upgraded Tonks and Langmuir approximate solutions to the exact analytic

one, however, holding for cold ion source distribution under the assumption

of strict quasi-neutrality (ε→ 0). Soon after H&T publication Self [62], how-

ever, announced a complete numerical solution, i.e., with the quasi-neutrality

assumption removed, but still with a singular (cold) ion source (Tn = 0). Em-

mert et al. [22] tackled the plasma solution (ε = 0) with a regular (warm)

(Tn 6= 0) but artificial ion source, prepared in advance to yield a Maxwellian

ion distribution function. Bissell and Johnson [10], however, decided to start

from a more realistic, i.e., Maxwellian ion source and found a numerical so-
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5.1 Basic considerations

lution within a limited range of ion source temperatures. Their model was

constrained by their choice of the kernel approximation. Soon after their

work Scheuer and Emmert (S&E) [61] used a better kernel approximation

enabling them to find a solution holding also in the range of small ion source

temperatures, but, unfortunately, not for relatively ’warm’ ion sources, which

is of high importance for fusion application. A number of years after S&E’s

work the numerical method, libraries and computing resources dramatically

increased. Kos [39] with collaborators became able to employ the exact ker-

nel instead of an approximate one. Kos et al. solved the plasma problem

with a Maxwellian source without any restriction regarding the ion temper-

ature, however, for limiting ε → 0 case. For many purposes the results by

Kos et al. are sufficient, but for some refined purposes they are not enough

exhaustive.

From a theoretical point of view, a complete plasma and sheath equa-

tion for a regular ion source without quasi-neutrality assumption is needed

primarily in order to find a reasonably acceptable definition of the plasma-

sheath boundary surface. Theoretical backgrounds underlying the definition

started with the famous Bohm criterion [12], formulated for the case of a

negligible ion temperature which was later upgraded in fluid approximations

and the kinetic approach with various physical interpretations. In the kinetic

interpretation it turns out that the plasma-sheath boundary is a surface at

which slow perturbations originated from the sheath region are completely

reflective (Allen [5]). Unfortunately, the definition of ’slow’ perturbations is

not enough precisely defined to be of practical use, e.g., in a laboratory ex-

periment. A more explicit alternative definition by Stangeby and Allen [65]

is based on fluid theory. They showed by analyzing both plasma and sheath

sides that the plasma-sheath boundary is a Mach surface, so none ion-sound

can penetrate this surface from the sheath to the plasma side. Allen and

Stangeby’s arguments are essentially based on a plasma dispersion relation

in comparison with the Harrison and Thompson kinetic plasma sheath crite-

rion.

On the other hand, there is an alternative approach to identify the plasma-

sheath boundary as a region of finite thickness, rather than a surface. This

approach is based on bridging the plasma and sheath solutions via a math-

ematical formulation of the intermediate scale, enabling matching plasma

and sheath solutions via a uniformly valid approximate solution. While this
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Extension of the theoretical model

approach is well established in fluid model and kinetic model for a cold ion

source (see e.g., articles of Riemann [49, 53] and references therein) the scal-

ing rules for warm ion sources are still under consideration. A highly reliable

solution of the complete plasma-wall transition equation is needed for the

confirmation of these rules.

In addition to the academic question of a reasonable definition of the

sheath boundary being either an infinitely thin surface or a finite-width

region, there is a strong need to have a practical definition for plasma-

engineering purposes. For example, fluid codes in fusion research (SOLPS,

EDGE2D) are not apt to deal with sheath region, so the computational

domain should be limited to quasi-neutral plasma. Attempts towards link-

ing hydrodynamic and kinetic parameters at the plasma edge were made by

Kuhn et al. [40] employing a theoretical method and further elaborated via

PIC simulations by Jelić et al. [32], however, for singular ion sources. PIC

simulations for regular ion sources were performed by Jelić et al. (to be

published).

However, in addition to PIC simulations, which in fact yield somehow

’experimental’ i.e., ’empirical’ data, the results of PIC simulation also require

their analytic and/or numerical counterpart of the results. This is the main

topic of the present chapter. In this chapter we shall present the method and

results obtained for arbitrary Tn for arbitrary ion-source velocity distribution

and for arbitrary ε. The procedure to get such a solution of such a problem

essentially consists of several steps. The electron density distribution over the

system should be prescribed in advance (usually Boltzmann distribution).

Secondly, the ion source velocity distribution has to be prescribed. Based

on these assumptions the rigorous solution of the kinetic equation for ions is

found. The potential profile (or equivalently the Ψ, which physically presents

the inverse electric field) should be found from Eq. (5.1) as a function of

the place of observation. The potential profile obtained from Eq. (5.1) is a

’fingerprint’ for any particular choice of ion-source velocity distribution from

which the resulting ion velocity distribution and furthermore its moments

can be calculated, providing the boundary conditions are well defined.
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5.2 Theoretical backgrounds

5.2 Theoretical backgrounds

The general formulation of the problem in plane-parallel symmetric discharge

consists in simultaneously solving Boltzmann’s kinetic equation for the ion

velocity distribution function (VDF) fi(x, v),

v
∂fi
∂x
− e

mi

dΦ

dx

∂fi
∂v

= Si(x, v) , (5.2)

and the Poisson’s equation

− d2Φ

dx2
=

e

ε0

(ni − ne) , (5.3)

The source term Si(x, v) on the right-hand side of Eq. (5.2) describes micro-

scopic processes assumed for a particular scenario of interest, x is the Carte-

sian space coordinate, v is the particle velocity, e is the positive elementary

charge, mi is the ion mass, Φ(x) the electrostatic potential at position x, ε0

is the vacuum dielectric constant and ni,e are the ion and electron densities,

respectively.

The schematic diagram of the geometry of the problem is shown in

Fig. 5.1. The plates at x ± L are assumed to be perfectly absorbing and

Φ(x)

x = 0 x = Lx = −L

Φ(x)

(x, v)

Φ(x′)

(x′, v′)

Φw

x

Figure 5.1: The geometry and coordinate system.

electrically floating. The electrostatic potential Φ(x) is assumed to be mono-

tonic decreasing (for x > 0) and is defined to be zero at x = 0. Below we

give a comprehensive analysis of the Tonks-Langmuir model starting from

the general solution of the kinetic Eq. (5.2). In the expression of the source
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Extension of the theoretical model

term Si(x, v), describing the ion birth due to the electron-neutral impact,

the distribution function of neutrals is assumed to be quite general (this

distribution function will be specified later on for specific cases).

Si(v, x) = Rnnne(x)fn

(
v

vTi

)
H

(
miv

2

2

)
, (5.4)

where R is the ionization rate, nn is the uniform number density of neutrals.

The electrons follow the Boltzmann distribution to give the electron number

density

ne(x) = n0 exp

{
eΦ(x)

kTe

}
. (5.5)

Here n0 is the electron density at x = 0. We introduce the Heaviside step

function (see (2.20)) to satisfy the positiveness of the kinetic energy of the

born ion. The term fn(v/vTi) represents the velocity distribution function of

the neutrals normalized as ∫ ∞
∞

fn

(
v

vTi

)
dv = 1 , (5.6)

where vTi =
√
kTi/mi is the thermal velocity of the born ions defined by the

temperature Tn of the neutral gas, Ti ≡ Tn. Due to the symmetry we further

consider the right-hand half of the discharge, x ≥ 0.

For the ion flux onto the wall from Eqs. (5.2), (5.4) and (5.6) we find

Γi = RnnLne,av , (5.7)

where ne,av represents the average value of the electron density over the

system,

ne,av =
1

L

∫ L

0

ne(x)dx . (5.8)

The requirement that the ion current must be equal to the electron current

at the wall enables us to write

Γi = Γe , (5.9)

LRnnne,av =
1√
2π
vTen0 exp

{
eΦw

kTe

}
, (5.10)
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5.2 Theoretical backgrounds

where vTe =
√
kTe/me, and me, Te are the electron mass and temperature

respectively, Φw is the wall potential. Introducing an auxiliary function

Fn

(
v

vTi

)
=
√

2π · vTifn
(
v

vTi

)
(5.11)

The source term (5.4) acquires the form

Si(x, v) =
1

L
Bne(x)Fn

(
v

vTi

)
H

(
miv

2

2

)
, (5.12)

B =
1

2π

√
Te
Ti

mi

me

n0

ne,av
exp

{
eΦw

kTe

}
. (5.13)

The parameter B definers the ionization frequency νi and the characteristic

ionization length λi as follows:

νi = B

√
2π

L
vTi , (5.14)

and

λi =
cs
νi

=
L

B

√
Te

2πTi
. (5.15)

The general solution of Eq. (5.2) with the source term (5.12) found by means

of characteristics has the form

f±i (x, v) = ± B

L
n0

∫ x dx′√
v′2

exp

(
eΦ(x′)
kTe

)
Fn

(
±
√
v′2

vTi

)
H(v′2)

+ f̄i
±
(
v′2 +

2e

mi

Φ(x′)
)
,

(5.16)

v′2 = v2 − 2e

mi

{Φ(x′)− Φ(x)} (5.17)

In Eq. (5.16) f±i denotes the distribution function of the ions moving in the

positive (,,+”) and negative (,,-”) directions of the x-axis. The point (x′, v′)
in the phase-space (see Fig. 5.1) is the point of the ion birth. The velocity

v of the ion at the observation point x we find from the energy conservation

law (5.17). Functions f̄±i (x, v) are the arbitrary functions corresponding to

the homogeneous part of Eq. (5.2). These two arbitrary functions should be

found by means of the following boundary conditions:
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Extension of the theoretical model

(a) At the center of the system, x = 0, the distribution function must be

symmetric in the velocity space

f+
i (0, v) = f−i (0, v) . (5.18)

(b) Due to perfect absorption there are no ions on the wall surface, x = L,

moving with a negative velocity (it means from the wall):

f−i (L, v) = 0 . (5.19)

On the realization of condition (a) one has to shift the ion velocity in the

form

v2 ⇒ v2 +
2e

mi

Φ(x) , (5.20)

while with condition (b) we need the shifting

v2 ⇒ v2 − 2e

mi

{Φw − Φ(x)} . (5.21)

Straightforward calculations lead to the following solution of the Boltzmann

kinetic equation for the arbitrary distribution function of neutrals.

f+
i (x, v) = B

n0

L

{∫ x

0

dx′Fn

(√
v′2

vTi

)
+

∫ L

0

dx′Fn

(
−
√
v′2

vTi

)}

× 1√
v′2

exp

{
eΦ(x′)
kTe

}
H(v′2) ,

(5.22)

f−i (x, v) = B
n0

L

∫ L

x

dx′
1√
v′2

exp

{
eΦ(x′)
kTe

}
H(v′2)Fn

(
−
√
v′2

vTi

)
. (5.23)

In (5.22) and (5.23) the velocity v′ is defined by (5.17). Here we have to

mention that similar solutions are found by K.-U. Riemann [57] using the

different from (a) boundary condition. For the ion number density and the

ion flux from (5.22) and (5.23) there are

ni(x) =

∫ ∞
0

dv{f+
i + f−i }

= 2B
n0

L

∫ ∞
0

dv

{∫ L

0

dx′√
v′2
Fn

(
−
√
v′2

vTi

)
H(v′2) exp

{
eΦ(x′)
kTe

}

+

∫ x

0

dx′√
v′2

[
Fn

(√
v′2

vTi

)
− Fn

(
−
√
v′2

vTi

)]
H(v′2) exp

{
eΦ(x′)
kTe

}}
,

(5.24)
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Ji(x) =

∫ ∞
0

dvv{f+
i − f−i }

=B
n0

L

∫ ∞
0

dvv

∫ x

0

dx′
1√
v′2

exp

{
eΦ(x′)
kTe

}
H(v′2)

×
{
Fn

(√
v′2

vTi

)
+ Fn

(
−
√
v′2

vTi

)} (5.25)

In order to find the floating potential by comparing the ion and the electron

fluxes onto the wall, we further analyze the expression of ion flux Ji(L) from

(5.25) at x = L.

In the present work we pay our attention to the case of Maxwellian ion

source velocity distribution. It is a relatively simple task to formulate the

problem but a rather demanding one to perform numerical calculations from

many points of view like e.g., numerical reliability and stability up to the

CPU cost per simulation case. It seems to be a logical path to be pursued

here to first pursue previous works and to extend previously well established

results to the extent possible via employing Maxwellian ion-source velocity

distribution of arbitrary Tn and without any limit of the system length, i.e.,

any restriction of ε.

Analogous solutions with other types of ion velocity distribution function

sources as the so-called “waterbag” or a “shifted Maxwellian” distribution

function under the same assumptions of the finite ion source and finite ε will

be elaborated in the future as the CPU price will decrease. The waterbag

model is in this thesis tackled roughly in Appendix A, to illustrate that such

a simple velocity distribution is in fact equally difficult as a more complex

one if one wants to obtain a solution. The main investigation here is devoted

to the Maxwellian shaped ion source VDF. This is a very plausible idea, i.e.,

that the neutrals (or ions) come from the core to the SOL (Scrape-off Layer)

region in Tokamak devices with such a velocity distribution, starting their

“new life” with a “new identity”. Our task is to reconstruct this new identity

based on an initial one. It turns out that the new identity surprisingly differs

from the original one. For example, the final temperature differs for an order

of magnitude from the temperature of originally ”injected” i.e., generated

particles. Other features, like moments of final velocity distribution and

their shapes over the system follows from the solution for function Ψ and

consecutive solutions for the final local ion-velocity distribution. This method

is pursued as follows in the next Section based on the reference assumption
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Extension of the theoretical model

of the Maxwellian velocity distribution of ions as generated or injected in the

system.

5.3 Maxwellian distribution of neutrals

For the Maxwellian source the auxiliary functions (5.11) is

Fn

(
v

vTi

)
= exp

(
− v2

2v2
Ti

)
. (5.26)

Introducing the dimensionless quantities

u =
v√
2cs

,
eΦ(x)

kTe
→ Φ(x) ,

x

L
→ x ,

n =
ni
n0

, j =
Ji
n0cs

, τ =
Te
Ti

, cs =

√
kTe
mi

.

(5.27)

The expressions for the ion density and the ion flux (5.24), (5.25) can be

simplified to

n(x) = 2B

∫ ∞
0

du

∫ 1

0

dx′ exp(Φ(x′))

× exp (−τ{u2 − Φ(x′) + Φ(x)})√
u2 − Φ(x′) + Φ(x)

H(u2 − Φ(x′) + Φ(x)) ,

(5.28)

j(L) = 2
√

2B

∫ ∞
0

duu

∫ 1

0

dx′ exp(Φ(x′))

× exp (−τ{u2 − Φ(x′) + Φ(x)})√
u2 − Φ(x′) + Φ(x)

H(u2 − Φ(x′) + Φ(x)) .

(5.29)

The integral over x′ in (5.28) can be split into two parts∫ 1

0

dx′(. . . ) =

∫ x

0

dx′(. . . ) +

∫ 1

x

dx′(. . . ) . (5.30)

In the first interval (0, x) of the integration

Φ(x′)− Φ(x) ≥ 0 (5.31)

and in the second

Φ(x′)− Φ(x) ≤ 0 . (5.32)
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5.3 Maxwellian distribution of neutrals

This allows us to use the cut-off property of the H-function and finally we

find

n(x) = B

∫ L

0

dx′ exp[Φ(x′)]

× exp
[τ

2
{Φ(x′)− Φ(x)}

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
,

(5.33)

j(1) =

√
2π

τ
B

∫ L

0

dx′ exp[Φ(x′)] . (5.34)

In obtaining (5.33) also the relation

2

∫ ∞
0

exp(−τx2)√
x2 + a2

= exp
(τ

2
a2
)

K0

(
τa2

2

)
(5.35)

is used. Here K0(z) is the modified Bessel function of zeroth order. Eq. (5.33)

coincides wit the expression for the ion density used in Ref. [10] and Ref. [61].

In the limit of the cold source, Ti → 0 and the auxiliary function reads

Fn

(
v

vTi

)
=
√

2πvTiδ(v) , (5.36)

(δ(z) is the Dirac δ-function) and for the ion density we find expression

n(x) =
1√
2

∫ x

0

dx′

λi

exp[Φ(x′)]√
Φ(x′)− Φ(x)

(5.37)

discussed previously in detail in [49, 53]. In (5.37) λi is defined by (5.15). In

notation (5.27) Poisson’s Eq. (5.3) acquires the form

B

∫ 1

0

dx′ exp [Φ(x′)− Φ(x)] exp
[τ

2
{Φ(x′)− Φ(x)}

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
= 1− ε2 exp(−Φ)

d2Φ

dx2

,

(5.38)

where ε = λD/L it the arbitrary parameter and λD =
√
ε0kTe/e2n0 is the

electron Debye length. Eq. (5.38) describes the potential profile for the ar-

bitrary temperature of the source. Using (5.10) and (5.34) for finding the

floating potential of the wall we obtain the relation

exp(Φw) = 2π

√
me

mi

√
Tn
Te
B

∫ 1

0

dx′ exp[Φ(x′)] . (5.39)

for determining the wall potential.
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5.4 Numerical method

We performed a number of simulations for various Tn, each with varied ε

taking values 0.0001, 0.003, 0.006, 0.001, 0.003, 0.006, 0.01, 0.01, 0.03, 0.006

and 0.1. It turns out that a numerical solving of the integro-differential

equation of type Eq. (5.38) is an extremely difficult problem primarily due

to the non-uniform grid employed in the plasma sheath problem solving via

the S&E method. The problem arises due to the second derivative of the

electric field for which we did not find an optimum numerical algorithm with

a well-defined accuracy. However, we found some rules which show that as

the ion temperature increases the results become more and more insensitive

on ε.

For calculation of the second derivative we implemented piecewise La-

grangian polynomial interpolation [19] of order 2, 3 in subintervals with small

Φ gradients. For the second derivative 5 point Lagrangian interpolation is

used as a basis for derivative. For the last point 4 point second derivative

of Lagrangian interpolation is used. Although such approximation is often

considered to be too expensive for numerical computation, it possesses beau-

tiful symmetry and with a modified (weighted) form is comparable in speed

to other approximations.

The main difference from ε = 0 case is that wall potential Φw is now a free

parameter that can be arbitrary. For a gases like Hydrogen used in fusion the

Φw can be approximated from floating wall condition in Eq. (5.39) for ε = 0

case. Integro-differential equation (5.38) becomes with specified Φ(1) = Φw

boundary condition a relaxation problem in a numerical sense although the

whole system is still floating. For initialization we implemented the following

function that assures monotonous initial “shot” to the endpoint

Φ[i] =
Φw

1− exp(1)

[
1− exp

(
i

N

)]
, (5.40)

disregarding λ1 and λ2. When initial profile is relaxed and converged we

employ additional dual iteration of the potential profile and endpoint Phiw
with similar smooth stepping technique to assure correct bounary condition

(5.39) for a given gas.
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Chapter 6

Results

6.1 The two-scale limit ε = 0

The Fredholm equation with the Bissell & Johnson kernel has a solution for

the electric potential lying between the analytic value of the Tonks Langmuir

limit (Φ > Φs = −0.854 at the sheath entrance) and zero (at the center

plane of symmetry). The particular value of Φs depends on the ion-source

temperature. In Fig. 6.1 we show the potential profiles as calculated in a

wide range of ion temperatures (solid lines) in contrast to B&J (scattered).

It can be seen that both sets of B&J and our results closely overlap in the

range of temperatures where B&J obtained their results. There is, however,

a small discrepancy for Ti = {0.5, 1, 2, 4} which may be ascribed to B&J’s

errors in the kernel as we demonstrated in Fig. 3.2. There is an additional

error in the presentation of B&J’s results in Fig. 6.1, which originates from

the fact that we did not have their exact data available but used scanned

data from Fig. 4 from their article [10] instead.

This issue, however, is not of primary importance to the present work,

since we are interested in the method without approximation. Our next step

is to compare our results for the electric potential with those obtained with

a more reliable kernel as employed by Scheuer and Emmert. In Fig. 6.2 we

show our potential profile with S&E’s result, which was presented with one

single curve i.e., obtained for Ti = 1. The shape of their single curve differs

from our results and thus also from those of B&J.

Our other investigations (to be published) performed via the PIC simu-

lation [9, 76] (in particular with BIT1 [73]) have shown that the S&E curve
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Figure 6.1: (Color) Potential profiles for various ion-source temperatures as
obtained by us with the exact kernel (solid lines) and by Bissell and Johnson
with their approximate kernel (scattered).

Figure 6.2: Comparison of the potential profile with S&E for Ti = Te. The
original scan is overlayed with our potential profile and axis box.
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6.1 The two-scale limit ε = 0

perfectly fits the case with a uniform ion source rather than with one pro-

portional to the electron density.

It turns out definitely that S&E in fact worked with the constant ion

source and NOT with the source proportional to the electron density. The

question arises why their results at the plasma boundary are in such excellent

agreement with B&J and ours. In our article [33] we give a straightforward

answer to this question: It turns out that the plasma parameters at the

boundary are invariant to the ionization source profile.

The dependence of the potential Φs at the quasi-neutral plasma (presheath)

boundary on the ion source temperature is shown in Figs. 6.3. The end or

the breaking point of the solution i.e., plasma boundary Φs, corresponds to

the place where the electric field becomes infinite. In Fig. 6.3(a) we show

the dependence of the breaking point in a “zoomed-in” range where the S&E

results are taken from their article. It is clear that our results overlap with

S&E’s results. The small discrepancy can be ascribed to the fact that our

method is a very advanced one, i.e., based on at least 1600 cells (whereas S&E

used 100 cells) and that we used the exact kernel instead of their approximate

one. Our solution in an extremely wide range of ion source temperatures is

shown in Fig. 6.3(b).

Once the potential profile is known, it determines the actual velocity

distribution at the point of observation, provided the source velocity distri-

bution is exactly specified, as is the case with the B&J model and the present

investigation.

Fig. 6.4 illustrates our velocity distributions for the cases of a small and

moderately high ion source temperatures in comparison with the cold-ion-

source case (Tonks and Langmuir). It can be seen that for small ion source

temperatures the shape of the velocity distribution resembles the T&L limit,

while with higher ion source temperatures it resembles S&E’s results. In

Fig. 6.5 ion velocity distribution is shown at various observing points (Φ(x)

on the right side of the discharge) for two distinct ion-source (neutral gas)

temperatures. The first one [Fig. 6.5(a)] corresponds to ”classic” laboratory

investigations, while the second one [Fig. 6.5(b)] is applicable to fusion rel-

evant plasmas. In both Figures [(a) and (b)] plasma boundaries Φs(xs) are

marked in bold solid lines. It is evident that ion velocity distribution at those

particular points “suddenly” lacks ions with negative ion velocities. This ob-

servation should be redefined as a new plasma-sheath criterion. In fact, this
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Figure 6.3: The plasma sheath boundary potential in a limited range of ion
source temperatures, where the S&E approximate kernel is valid, in compari-
son with our results (a), and in a wide range of of the ion source temperatures
(b), where we employed the exact kernel.

was already been done to some extent by Block and Fälthammar [11] via

their criterion for Double Layer formation existence.

Once the ion velocity distribution as a function of position (or equiva-

lently, of the potential corresponding to the latter) has been found, one can

calculate from it fluid quantities such as density, particle flux, total energy

flux, temperature, and higher moments of velocity distribution like heat flux,

etc., as described in section 2.4. While Bissell and Johnson made a step for-
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Figure 6.4: The analytic velocity distribution by Tonks and Langmuir in the
case of the zero-ion-temperature source in comparison with our results with
a finite ion temperature source.

ward by analytically preparing the integrals of the moments of the velocity

distribution function for a faster numerical calculation, Scheuer and Em-
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Figure 6.5: (Color online) Velocity distributions for (a) Tn = 0.1, and (b)
Tn = 10.

mert [61], performed direct numerical calculation using some kind of “brute

force”. The latter is a more expensive, yet more universal method which is

applicable to arbitrary analytic and experimental velocity distributions, so

we prefer to apply it in our present and future work. In Fig. 6.6(a) we illus-

trate the ion density profiles in a logarithmic presentation for three particular

temperatures (solid lines) in comparison with the electron density, which, by

the definition of the model, is Boltzmann-shaped. As expected, the ion den-

sities follow the straight line in the region of quasi-neutrality and more or less

sharply change such behavior at the positions of the field singularity (plasma

boundary).
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Figure 6.6: (a) Ion and electron densities in a logarithmic presentation as a
function of local potential Φ(x). (b) The ion flux as a function of Φ(x) .

In Fig. 6.6(b) we show the corresponding dimensionless ion fluxes [defined

by Eq. (2.28)], also calculated directly from the ion velocity distribution.

Ion flux is seen to increase in the plasma region but to become practically

independent of the sheath potential to the left of the plasma boundary. In the

sheath region, however, relevant assumptions of the model become invalid,

so they should be ignored.

As pointed out in the chapter 4, the quantity B is calculated from equality

Eq. (4.13) iteratively in a numerical procedure. With the density calculated

from the velocity distribution, it turns out a posteriori that the product Bni
is constant, i.e., with a high degree of accuracy equals unity. The result of
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calculating B as a function of the source temperature at an arbitrary point

(e.g., near the center of the system) is illustrated in Fig. 6.7(a).
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Figure 6.7: The dependence of B (a) and of the wall potential (b) on the ion
source temperature.

The next step is to calculate the normalized average plasma density over

the system from
∫ 1

0
ne(φ(s))ds and, based on this, to calculate the wall po-

tential with known B. The result is shown in Fig. 6.7(b) for a wide range of

ion source temperatures. These results match with those of B&J; however,

our results are not limited to the ion source (neutral) temperatures.

Fig. 6.8 shows the effective ion (final) temperature Ti as a function of

the local potential for various ion source temperatures Ta. The upper figure

shows the distribution of the ion temperature in a wide range of ion source
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Figure 6.8: Profiles of the ion temperature Ti [defined according to Eq. (2.31)]
for various ion source temperatures.

temperatures, while the bottom figure represents a ”zoom-in” for a very

cold ion source in comparison with a result obtained by using Riemann’s

software[57] for the limit of the zero ion source temperature. It is evident

that high ion source temperatures yield a final temperature which is smaller

by an order of magnitude. This fact is of high importance for both general

plasma physics and for fusion investigations, where the ions from the core

region penetrate the SOL region with rather high temperatures but their

temperature might suddenly drop therein.

For a better insight into this effect, Fig. 6.9 shows the dependence of the

effective temperature both at the center of the discharge and at the plasma
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Figure 6.9: the ion temperature at the center and the edge of plasma for
various ion source neutral temperatures.

edge as a function of the ion source temperature. It is apparently strange

that the final ion temperature is lower by almost an order of magnitude than

the ion source temperature. This is a consequence of the ion “cooling” due

to energy losses at the boundary. Our result on the final temperature Ti is in

good agreement with the results given by B&J for several particular cases.

Some doubts may appear regarding the numerical calculation of the mo-

ments from the final velocity distribution due to its singular character. We

resolve this dilemma by comparing Ti as calculated with extreme precision

via Riemann’s software and with our direct integration method. We used our

own software, which is based on Eq. (5.38). In the example in Fig. 6.10 this

software is applied to the case of an extremely small value of ε (ε = 10−5) for

an extremely small ion source temperature (Ti = 0.002). The temperature

profiles obtained by means of these approaches are illustrated in Fig. 6.10.

Regarding the normalization lengths of plasma, it should be noted that

such various lengths can be defined in an arbitrary manner. In fact, it is

clear from condition
∫
f(v)dv ≡ ∫ Cf(v)d(v/C) = 1 that in the Boltzmann

equation we can also use any normalization of the velocity distribution with

an arbitrary constant C, as well as put any other normalized length x/`, with

` an arbitrary constant length, instead of x/L. The “proper” normalization

should be decided on the basis of further purposes. While the first normal-
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Figure 6.10: Comparison of the results obtained via Riemann’s program
(solid line) and ours obtained via the direct integration method used in the
present work (scattered). For this comparison we used our software based
on Eq. (5.38) applied to the case of an extremely small ε = 10−5 for an
extremely small ion source temperature (Ti = 0.002).

ized length (x/L) just corresponds to a calculation domain extending from 0

to 1, the second one (x/`) is desired to be a physical quantity of interest for

particular purposes. According to H&T [29] and Self [62], the proper nor-

malization in the limit of the vanishing ion source temperature and vanishing

ε is an analytic value that depends on the ionization mechanism and in the

case of ionization proportional to the electron density yields the exact value

xs = 0.405 . . . (plasma boundary, where the electric field becomes singular).

Riemann, however, prefers to use a slightly different normalization (see e.g.

Ref. [53]) which yields the said value multiplied by
√

2, i.e., xs = 0.572 . . . .

Comparing the derivation by B&J with that of Riemann we found that the

re-normalization
x

L
→ x

`
≡ B

√
2πTi (6.1)

(where Ti is normalized to Te) is equivalent to rescaling the system to the

ionization length `. The result is shown in Fig. 6.11, however not only for

the “classical” case of the vanishing ion source temperature but, instead, for

arbitrary values thereof. Our “empirical” extension of Harrison-Thompson’s

result to an arbitrary ion source temperature is very important for application

to the theory of the intermediate plasma-sheath region, which due to lack of
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Figure 6.11: Renormalized presheath length xs as a function of the ion-source
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any data on the ionization length in the case of the finite ion temperature up

to now has been limited to the “cold” ion source case only (see e.g., recent

works by Riemann [53]).
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Figure 6.12: Ionization lengths of the Maxwellian-source and flat-source ion-
ization mechanisms as defined by H&T.

Fig. 6.12 represents the dependence of the characteristic ionization length

(5.15) on the ion-source temperature. In this we have to keep in mind that
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6.1 The two-scale limit ε = 0

the re-normalization is adjusted to “taste” of H&T, but can be converted in

a trivial manner to e.g., according to works of Riemann via multiplying by

a factor of
√

2.

After obtaining all desired quantities like the ion density and temperature,

other derived quantities can be calculated. One such quantity, which has re-

cently been introduced in plasma physics by Kuhn et al.[40] and Jelić et al. [32],

is the “local polytropic coefficient”, which is of high importance to plasma

sheath determination. In fact, for engineering purposes the definition of the
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Figure 6.13: Illustration of the local ion polytropic coefficient for several ion
source temperatures.

plasma sheath boundary as the point where the ion-sound velocity equals

the fluid ion velocity might be of considerable interest. However, determin-

ing the ion-sound velocity requires the knowledge of the local ”ion polytropic

coefficient”γ. So far there has not been a reliable model to treat this quan-

tity for the regular ion source temperature case. Our solution enables one to

further investigate this issue in detail in the near future. Our Fig. 6.13 is just

an illustration of the behavior of the polytropic coefficient, which is impor-

tant in local ion sound velocity calculations. It has been suggested by Kuhn

et al. [40] that the maximum of γ may be a possible means of defining the

plasma-sheath boundary. Our Fig. 6.13 confirms that this “coincidence” still

holds for low ion source temperatures (curve Ti/Te = 0.1). Apparently, the

deviation from this rule becomes stronger, as the ion temperature increases.
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For the characterization of sheath edge singularity we performed numer-

ous simulations with high grid densities in order to obtain sufficiently accu-

rate results from which we could find safely the power α in the formula

(Φs − Φ)→ c(xs − x)α . (6.2)

Riemann’s analytic solution [57] for Tn = 0 is exactly α = 1/2. For Tn > 0

(that means Tn = O(1)) he expects α = 2/3 (again exactly, independently

on the detailed value of Tn). For α estimation we performed given model

fitting with with different number of end-points.

As it was unclear what is the best approximation we initially compared

two approximation models: nonlinear and logarithmic non-linear. With log-

arithmic approximation the logarithm of the exponential model is a linear

model for the logarithm of the data and thus better fits points near xs. It

turned out that the question of the sufficient number of points was much

larger than initially assumed and this ruled out logarithmic fitting. Usually

the width of approximation is under 10−4, depending on the grid and the

convergence status of input data. It was observed that even when we reach

saturated solution when observing Φs and B, additional huge number of it-

erations can increase αmax and decrease the number of points for optimal

approximation.
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Figure 6.14: Dependence of αmax on the ion-source temperature for logarith-
mic scale of Tn.
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6.2 Unified plasma and sheath solution ε > 0

Dependence of αmax on Tn is shown in Fig. 6.14. We used different grids

to prove invariance of the αmax on the grid. As pointed before, the optimal

number of approximation points is related also to grid setup. For Tn ≥ 1 we

see that approximation came within 1% to the theoretical value of α = 2/3.

In the area Tn ≤ 0.1 we observe a gradual drop of α to the theoretical limit

for α0 = 1/2.

6.2 Unified plasma and sheath solution ε > 0

The extension of the ε = 0 model to the general case where ε > 0 was de-

scribed in the previous chapter. The following results were obtained with the

unified program code that still maintains both models. The computational

grid and almost the entire code remain the same, although numerical models

are different. Our results were compared using K.-U. Riemann’s software

duo eps [57], which is valid only for Tn = 0 and ε > 0. It should be noted

that the procedure applied by Riemann is a reversal of our method. Our

results are obtained with the fixed system length L = 1 first. From the

engineering point of view this is a natural way to deal with the system of

interest. After finding a solution we are able to rescale our results according

to any desired coordinates, i.e., in accordance with formula xs =
√

2π
√
TiB.

Our results of the potential profiles with L = 1 are shown in Fig. 6.16. In

Fig. 6.17 we show the results after rescaling our results.

High grading of the grid when approaching x = 1 enabled us to calculate

for even smaller ε ≤ 0.0006. A zoomed potential profile in Fig. 6.18 shows

such case along with ε = 0 result that appears like straight line. Even higher

zoom would show high (infinite) electric field at the endpoint.

Fig. 6.19 shows dependence of potential profiles for a given ε. It should be

noted that our cases use hydrogen as a basis for determining wall potential

Φw, while Riemann prefers argon. To give some comparison within “cold”

case we show in Fig. 6.20 results our program for Tn = 0.01 and compare it

with Tn = 0 for different ε. Curves align each other well except for the ε = 0.1

case where we observe “undershoot” similar to ε = 0.1 case in Fig. 6.17. Such

discrepancy can be prescribed to low grid used in this cases and to numerical

difficulties with low Tn. In any case ε = 0.1 can hardly be considered as a

plasma.
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Figure 6.20: Comparison of potential profiles for Tn = 0 obtained with Rie-
mann’s program (dashed), and Tn = 0.01 obtained with our program (solid).
Wall potential Φw = −4.0 corresponds to argon.

As pointed before the generalized Bohm criterion holds strictly only in the

two-scale approach which requires that the smallness parameter ε tends to

become infinitely small. In real plasmas this requirement is just a qualitative

statement without any practical significance. Since we need to define the

plasma-sheath boundary in real plasmas (with finite-ε) we look for a universal

way to fit the potential profiles in the intermediate region independently of

plasma parameters, i.e., on ε. The rescaling is given in coordinates ζ and ω

(instead of x and Φ) and the rules are as follows. In fluid model, appropriate

scaling is

ζ = ε−4/5(x− xs) and ω = ε−2/5(Φ− Φs). (6.3)

In the kinetic approach with a singular (cold) ion source the transformation

of coordinates obey the rule

ζ = ε−8/9(x− xs) and ω = ε−4/9(Φ− Φs) (6.4)

In the kinetic approach with a regular (warm) ion source the transformation

of coordinates was predicted in the form

ζ = ε−6/7(x− xs) and ω = ε−4/7(Φ− Φs). (6.5)

In the above expressions xs and Φs are the position and the corresponding

potential of the (unknown) plasma-sheath boundary. The xs and Φs quan-
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6.2 Unified plasma and sheath solution ε > 0

tities are explicitly found for the fluid model and the kinetic model with a

singular ion source. However, these quantities had been unknown for the

model with regular (warm) ion source until the work by Kos et al. [39].

This results from mathematical difficulties arising from ion source velocity

distribution near the zero velocity. Without knowing these quantities the

scaling (6.5) cannot be confirmed or applied. The problem of simultaneously

finding xs and Φs is widely discussed by Riemann, who, in fact, inspired our

work [39]. However, the knowledge of xs and Φs is just a necessary but

not sufficient prerequisite for investigating the scaling rules in normalized

coordinates in analogy to the case of a cold ion source (Riemann 2006 [53]).

The present work amends this missing link. However, it turns out from our

work that at least regarding high ion temperature plasmas we obtained a

sufficient number of results to make a legitimate hypothesis on the results to

be obtained in the future.

For an increasing ion source temperature (e.g., above Ti, src ≡ Ta ∼ 1)

the potential profiles in normalized and renormalized coordinates are very

weakly dependent on ε. Therefore for high enough ion temperatures the

problem of the intermediate region between the sheath and plasma as given

by the above-stated rules seems to become rather meaningless. The results

regarding the dependence of the electric field is shown in Fig. 6.21, where
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Figure 6.21: Electric fields obtained numerically in a wide range of ion source
temperatures (Tn = 0.01, 1.00 and 10.0), each for a rather small and rather
high choices of ε’s (ε = 0.001 and ε = 0.1, respectively
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we show the electric field in a wide range each for a rather small and rather
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Figure 6.22: Second derivative of the potential for Tn = 1 and various ε.

high choices of ε’s (ε = 0.0001 and ε = 0.1, respectively). In this figure

we also present the tangents to the electric field which show that in a wide

range of the discharge the electric field is a linear function of the position. In

figure 6.22 we show some “intermediate” results, i.e., the second derivatives

of the potential. This can be expected in details for confirming that the

second derivative is a ’regular quantity’ despite of the fact that in particular

codes like Mathematica and C-libraries problems appear with the second

derivative, especially for non-uniform grids.

In Fig. 6.23 we finally show the charge imbalances for the two ion-source

temperatures and for a whole range of ε’s (0.0001 and 0.1). While in the first

case (ε ≤ 0.01) the plasma condition ni−ne ≈ 0 is well satisfied, in the second

case (ε > 0.01) this is highly violated. Notwithstanding, Riemann has found

that even in the last case his similarity rules still hold with a surprisingly

high accuracy. We may conclude that in the case of the finite ion source

temperature the rule holds even more strongly, since with an increased ion

temperature, the results in general merge with each other so as to become

insensitive to ε.
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Figure 6.23: Charge imbalance for Tn = 1 (a), Tn = 10 (b) taken for a
comparison with Riemann’s results.

6.2.1 Particle In Cell method

For quasi-neutral models (ε = 0) solutions can be obtained analytically only

in some special cases. Solving the above problem for finite Ti and ε > 0 is a

rather non-trivial one, even via the numerical-computation method and still

is a considerable challenge which is waiting for a reliable algorithm to be used.

Fortunately, we can instead use the Particle-in-Cell numerical simulation

(PIC) method [9, 73], which is fully kinetic and inherently requires ε > 0,

while the ion temperature is arbitrary.

In PIC simulation the particle motion is entirely defined via its position

in so-called phase space. In Fig. 6.24 we see data of particle positions in the
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two-dimensional phase-space obtained with PIC simulations by Jelić [32] in

the one-dimensional plasma-wall transition layer.

Figure 6.24: Particles (ions) in x-v phase space. The density of points is
proportional to the particle distribution function.

Extracting velocity distribution from such an experimental kind of data

requires discretization in both x- and v-directions as shown in Fig. 6.25. A

convenient method is to choose fixed place “x” and to count the number

of particles (each point in Fig. 6.24 represents a particle) with particular

velocities along the vertical axis.

Fig. 6.26 presents the velocity distribution at several places (note that

the potential and physical coordinate are well related via univalued relation

Φ = Φ(x)), emerging from the requirement of the monotonic potential profile.

Finite x-v grid, i.e., the choice of finite x-v windows, involves a spread of

velocity distribution. In the analytic-numerical method, however, we work

with infinitely small windows. Thus we have a Maxwell daemon which sits

at a place and counts the number of particles which pass to the left and right

hand side of the system and measures at the observation point the velocity

of each particle. So the velocity distribution that he observes is the exact

one. This is equivalent to our method.
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6.2 Unified plasma and sheath solution ε > 0

Figure 6.25: Discretization method of x-v phase-space.

Figure 6.26: Ion velocity distributions as obtained at various places using PIC
simulation experiments. Note that the potential corresponds to coordinate
x.
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On the other hand, the fluid quantities in PIC simulations must not be

calculated a posteriori from such velocity distribution but, instead, the num-

ber of particles with certain properties (density, directional velocity, temper-

ature, heat and energy fluxes) are “counted” within each discretization cell

during the simulation.

Figure 6.27: Ion polytropic coefficients as obtained from PIC simulations.

In Fig. 6.27 we last show the ion polytropic coefficient obtained in our PIC

simulations as a function on the local potential. Simulations were performed

with care using huge computer resources and can be considered as highly

reliable regarding ion velocity distribution ever done for the Tonks-Langmuir

model with finite ion temperatures.

However, a major problem of performing PIC simulations is the high cost

of a simulation. In addition, the shape of our velocity distributions from PIC

simulations is just a result of a very demanding “experiment”. The results

from such experiments are characterized by experimental or numerical noise

which can be removed with a highly increased cost. Finally, it is difficult to

derive some possible semi-empiric physical laws from the simulation results.
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Chapter 7

Discussion and Conclusion

In thesis we used Scheuer and Emmert’s [61] (S&E) numerical approach to

extended the Bissell and Johnson (B&J) model [10] to arbitrary ion source

temperatures. However, due to their approximation of the kernel, the S&E

approach is still limited to plasmas with low ion temperatures. Thus we em-

ployed an exact kernel and at the same time refined the approach of S&E,

i.e., applied a high-density and a high-resolution grid with additional conver-

gence stabilization approaches. In order to confirm numerical stability and

precision, our results were obtained in both Mathematica and in our own

package, yielding an excellent agreement in all numerical figures. From the

physical point of view we found that the final ion temperature is much lower

than the ion source temperature. This is quite important in fusion devices,

where ions penetrate from the core to the SOL region and then, moving to-

wards the divertor plate, become rapidly cooled. Most significantly, we found

the plasma edge xs as a function of the ion source temperature. We have

shown that in finite-temperature plasmas the maximum of the polytropic

coefficient in fact does not coincide with the edge of the plasma sheath as

this is the rule in plasmas with negligible ion-source temperatures, but still

can be considered as a good estimation of the plasma-sheath boundary. This

fact might be of considerable importance to linking fluid and kinetic plasma

parameters in fusion fluid codes like e.g., SOLPS-B2 (e.g. Ref. [15]).

It should be pointed out that our results are strictly valid only up to

the breaking point of quasi-neutrality. For a solution which is valid for the

whole system it was necessary to involve the effect of the electric field, i.e.,

to start from the full Poisson equation instead of using the quasi-neutrality
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condition. Such an approach lead to the integro-differential equation which

we obtained in the form

1

B
=

1

1− exp(−Φ)ε2d
2Φ

dx2

1∫
0

exp

[
(1 +

1

2Tn
(Φ′ − Φ)

]
K0

[
1

2Tn
|Φ′ − Φ|

]
dx′ .

(7.1)

In order to solve this equation we employed a new code that extended our

model for ε = 0 to arbitrary Debye lengths.

Considering the case when ε > 0, our investigation covers a wide range

of ion source temperatures for a wide range of ε. In fact this is the first

investigation of the kind to use the analytic-numerical method. Other meth-

ods assume employment of the PIC method (see e.g., Krek. et al. [34]). Our

principal result for ε > 0 shows that for an increasing ion source tempera-

ture (e.g., above Ti, src ≡ Tn ∼ 1) the potential profiles in normalized and

renormalized coordinates are very weakly dependent on ε. The problem of

intermediate region between sheath and plasma is provided by Riemann’s

rules for the finite ion source temperature in Eq. (6.5) turns out to be rather

unavailing at least in fusion plasmas.

On the other hand, for low enough ion source temperatures, there is

another type of scaling [Eq. (6.4)], which was excellently elaborated by Rie-

mann. In any case, our assumption about the relevance of ε for high ion

source temperatures will be investigated in details in subsequent works with

both Maxwellian and Water-Bag distributions employed. For the second

derivative of the potential we conclude that as the ion temperature increases,

the results become more and more insensitive on ε. This is a starting point

for further investigations on the proper plasma-sheath definition via either

method available.

Our approach is novel in many aspects. As first by using the PIC sim-

ulation method we obtained highly reliable potential profiles and the ion

velocity distribution ever done for the Tonks-Langmuir model with a finite

ion temperature and with finite ε. The quantitative comparison of the basic

quantity, i.e., the potential profile obtained with our method shows a nice

agreement with the results of Bissell and Johnson in the range of validity

of their results. New results, obtained by us outside this range along with

derived results, are presented as well.
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7.1 Contributions to science

We can summarize the results of the thesis as follows:

1. The model of Bissell and Johnson is extended to the so-called “finite-

ε ≡ λD/L” case. That means that strict quasi-neutrality is not strictly

satisfied unless ε is strictly zero. The kernel in our approach is not

approximated but calculated exactly. The degree of “exactness” is, of

course, dependent on the program package used in this work which is,

however, dependent on the libraries used)). The grid for calculating

potential profile is refined not only at the wall of the system but also

in the center of symmetry.

2. The basic hydrodynamic quantities like ion density, ion outflux, di-

rectional energy and temperature are derived directly from velocity

distribution on a grid which is self-adaptive near singularities of the

kernel of integral as well as near singularities of the electric field, i.e.,

its inverse value.

3. We extended our analytic-numerical calculations to the case of finite ε,

for comparing with PIC simulations, which are applicable to real sys-

tem without dividing the problem into plasma and sheath scale a-priori.

Two types of result are obtained, namely for a wide spectrum of ion

temperatures (0.01 < Tn/Te < 100) with ε = 0 and for several tempera-

tures (Tn/Te = {0.1, 1.0, 10}) with ε finite (ε = {10−5, 10−3, 0.01, 0.1}).

4. It appears that with an increasing ion temperature the dependence of

the potential profile on ε becomes more and more insensitive.

Thesis contributions were also published in [39, 38, 37, 42, 28, 33].
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Appendix A

Ion source of the ,,Water bag”
type

In this case the velocity distribution of the neutrals has the form

fn

(
v

vTi

)
=

1√
12vTi

{
Θ

(
v − v−
vTi

)
−Θ

(
v − v+

vTi

)}
, (A.1)

where v− and v+ are cut-off velocities, v+ > v−. The fluid velocity and the

temperature for the “water bag” distribution are respectively

V =
1

2
{v+ + v−} , (A.2)

kTi =
mi

12
{v+ − v−}2 (A.3)

(on further properties of such distributions see [20]). Unlike the Maxwellian

source this distribution can be of considerable interest to analytic derivation

in the kinetic approach. For simplicity’s sake, we consider the symmetric

“water bag” below, when

v− = −v+ (A.4)

and the auxiliary function (5.11) has the form

Fn

(
v

vTi

)
=

√
π

6

{
Θ

(
v + v+

vTi

)
−Θ

(
v − v+

vTi

)}
. (A.5)

We also assume the “water bag” to be enough broad

miv
2
+

2
� eΦw . (A.6)
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This condition implies that not all ions will move after their birth in the

positive direction of x-axis towards the wall. The negative wall potential will

not be able to turn those ions which have acquired large kinetic energy (A.6)

at their birth and move in the negative direction. The calculations quite

analogous to those carried out in the previous section lead to the following

expressions for the ion density and the ion flux.

n(x) =

√
2π

3
B

∫ 1

0

dx′ exp[Φ(x′)] arcsinh

(
v+

cs
√

2|Φ(x′)− Φ(x)|

)
, (A.7)

j(1) =

√
2π

3

v+

cs
B

∫ 1

0

dx′ exp[Φ(x′)] . (A.8)

The Poisson equation acquires then the for

1− ε2 exp(−Φ)
d2Φ

dx2
=B

√
2π

3

∫ 1

0

dx′ exp[Φ(x′)− Φ(x)]

× arcsinh

(
v+

cs
√

2|Φ(x′)− Φ(x)|

)
.

(A.9)

Comparing (A.8) with the electron flux onto the wall, the floating potential

should be found from the equation

exp(Φw) = π

√
2

3

me

mi

v+

cs
B

∫ 1

0

dx′ exp[Φ(x′)] . (A.10)
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Appendix B

Code description

Here we describe the basic parameters and usage cases of our code writ-

ten in standard C language with the extension of the GSL, OpenMP and

MiniXML libraries. The ppgplasma code calculates potential profile for a

given normalized ion source temperature that is assumed to be Maxwellian.

Generalization to arbitrary ε = λD/L and to a different discharge scenario

with the ϑ is also possible. For reference on the parameters one should con-

sult Chapters 4 and 5 in the present thesis. XML definition describes source

code version r858 available through Subversion repository.

B.1 XML definition

The XML definition of the input parameters for the program were included

with the intention to minimize parameter confusion and still provide easy

checking through XSLT support readily available by many XML libraries.

The input file contains all code specific parameters grouped into thematic

groups, namely global parameters, numerical parameters, grid parameters,

code parameters and diagnostic parameters. Default values of parameters

are also adopted in the code. Such approach gives a possibility to easily

maintain the old code even when adding new features to the code. The

decision on the default value is normally based on the influence of new fea-

tures to the possibility of a rerun of the old simulations. The default input

ppgplasma.xml file looks as follows:

<?xml version="1.0"?>
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<?xml-stylesheet type="text/xsl" href="./input_ppgplasma.xsl"
charset="ISO-8859-1"?>

<parameters>

<!-- global parameters -->

<global_parameters>
<Tn> 1.0 </Tn>
<epsilon> 0.01 </epsilon>
<B> 0.3 </B>
<vartheta> 1.0 </vartheta>
<mass_ratio> 1836.1527 </mass_ratio>

</global_parameters>

<!-- numerical parameters -->

<numerical_parameters>
<soft_step> 0.001 </soft_step>
<parabolic_range> 0.01 </parabolic_range>
<smooth_step> 1.0 </smooth_step> <!-- range [0,1] -->
<B_step> 0.0001 </B_step>
<niter> 200000 </niter>
<zone_epsrel> 1.0e-7 </zone_epsrel>
<shift_to_origin_rate> 2500 </shift_to_origin_rate>
<phi_wall_step>0.001</phi_wall_step>

</numerical_parameters>

<!-- grid parameters -->

<grid_parameters>
<np> 1601 </np>
<lambda1> 1.4 </lambda1>
<lambda2> 2.4 </lambda2>
<phi_1> -0.8 </phi_1>
</grid_parameters>

<!-- code parameters -->

<code_parameters>
<use_finite_epsilon> 0 </use_finite_epsilon>
<use_parabolic_rewrite> 1 </use_parabolic_rewrite>
<use_average_smoothing> 0 </use_average_smoothing>
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<use_fix_right_side> 1 </use_fix_right_side>
<use_adjust_B> 1 </use_adjust_B>
<use_regrid> 1 </use_regrid>
<use_shift_to_origin> 1 </use_shift_to_origin>
<use_adjust_phi_wall> 0 </use_adjust_phi_wall>

</code_parameters>

<!-- diagnostics parameters -->

<diagnostics_parameters>
<iter_dat> 100 </iter_dat>
<psi_dat> 20 </psi_dat>
<psi1_dat> 1 </psi1_dat>
<pot_dat> 0 </pot_dat>
<ds_dpsi_dat> 0 </ds_dpsi_dat>
<dpsi_ds_dat> 0 </dpsi_ds_dat>
<ddpsi_ds2_dat> 1 </ddpsi_ds2_dat>

</diagnostics_parameters>

</parameters>

B.2 Parameters

B.2.1 Global Parameters

This group of parameters is used to prescribe physical parameters of the

problem. The parameters are considered at the startup for a specific case of

investigation. This means that it is up to the code and its code parameters

how these parameters are considered in calculation. For some cases these

parameters are not considered at all as they are not influential, but they can

be left in the XML file or can be even left out and rely on the default value.

• Tn : is the normalized temperature of the neutral gas Tn = 1/τ .

This parameter is always considered and is the most influential for a

given investigation. Practical ranges are [0.002, 1000]. Although used

in many places in the code, the most influential is part is within the

arguments of the modified Bessel function

K0

{
1

2Tn
|Φ(x′)− Φ(x)|

}
, (B.1)

where Tn plays a major role that limits the practical range.
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• epsilon : is a relatively small but finite ε = λD/`, with λD the elec-

tron Debye length and ` being the relevant characteristic length of the

problem and is considered only if use finite epsilon = 1. Practical

values are in the range [0, 0.1]. Following Riemann [53], we limit our

investigation to ε = {0.0, 0.001, 0.003, 0.01, 0.03, 0.1}
• B : is the initial value of the constant B, which is considered to be

the eigenvalue of the problem and is related to the source strength.

This value is used only if there is no psi.dat in the current directory

available, to be read from. If psi.dat is available, the value is not

considered at all.

• vartheta : defaults to 1.0 for Maxwellian-shaped ion sources. The

parameter ϑ characterizes the rate of ion generation per unit volume:

when ϑ = 0 the rate is uniform; when ϑ = 1 the rate is proportional

to the electron density. The values of ϑ greater than unity correspond

to those cases where ion generation due to ionization is multiple stage

process dependent upon the electron density. As a constant source

vartheta = 0.0 should be used. The influence of ϑ is shown in the

following generalized equation

1

B
=

1

1− exp(−Φ)ε2
d2Φ

dx2

×
1∫

0

dx′ exp
[
(ϑ+

τ

2
)Φ(x′)− (1 +

τ

2
)Φ(x)

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
.

(B.2)

With explicit source distribution and ϑ the non-dimensional form of

ion velocity distribution function is

fi(Φ(x), v) = B

×
∫ 1

0

dx′ exp(ϑΦ′)
exp [−(v2 − (Φ′ − Φ))/Tn]√

v2 − (Φ′ − Φ)
.

(B.3)

• mass ratio : is the mass ratio between ion and electron and is related

to wall potential Φw with equation

exp(Φw) = 2π

√
me

mi

√
Tn
Te
B

∫ 1

0

dx′ exp[Φ(x′)] . (B.4)
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Default value of mass ratio = 1836.1527 is for Hydrogen that is of

central interest in fusion. When use finite epsilon = 0 this value is

not used in iterations. With combination use adjust phi wall = 1

and use finite epsilon = 0 the wall potential Φw is calculated and

printed during each iteration. If use finite epsilon = 1 the Φw is

always printed out.

B.2.2 Numerical Parameters

This group holds the parameters that set up and control the convergence

behavior during the iterative process of solving Eq. (B.2).

• soft step : controls the step size for each potential grid point. This

parameter equals to α in Eq. (4.11) and can be associated to the time-

step when solving some differential equations. Practical values are in

the range [0.00001, 0.1]. As with fixed-point iterative methods, larger

values can increase convergence, causing at the same time oscillatory

behavior or even divergence. The default value of 0.01 can be used for

most cases.

• parabolic range : specifies the length of the parabolic rewrite or

interpolation that can be used to stabilize oscillations at starting grid

points. The number of grid points that are rewritten with parabolic

interpolation is calculated at the first iteration and is used for the

successive iterations. This range as formulated in Eq. (4.12) should

be used for ε = 0 only, as they can cause the second order derivative

to be non-continuous when ε 6= 0 at the point of the rewrite start.

The practical range [0, 0.1] can be used when quick convergence is

desired, gradually lowered when approaching the final solution and then

completely disabled with use parabolic rewrite = 0.

• smooth step : controls the degree of Laplacian smoothing as defined

by Eq. (4.11). Smoothing in the direction from x = 1 to x = 0 is

performed at every iteration and has impact on the smoothness of the

higher order derivatives of Φ(x) (see e.g. Fig. 6.22). The practical value

range is [0, 1], whereas it should be as low as possible and completely

disabled when approaching the final solution. Smoothing during iter-

ations especially helps stabilizing convergence when Tn < 0.1. Low
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frequency oscilations can be observed in such cases. Lowering this

value should be done with extreme care when approaching zero. For

Tn = 0.001 this parameter cannot be completely disabled. As average

smoothing is executed in-place the complete solution is undershoted.

This is a reason that use smooth step = 0 should be considered as

final step of every exact solution.

• B step : step size the adjustment of the system eigenvalue B ad

described by Eq. (4.13). Empirically it was found that within our

analytic-numerical approach the influence of B has little or no depen-

dence on the potential profile. Its influence can be mainly described

as a solution shift as described in Eq. 4.4. As B behaves as a true

eigenvalue of the system, this made us possible to compensate the shift

through calculation of B at each iteration with B step that ranges [0, 1].

Default value can be used. For range Tn = [0, 0.1] it is recommended

that B step ≤ 0.0001 to prevent interference oscilations caused by

high soft step.

• niter : maximum number of iterations. The default value is set to a

high value due to the possibility to stop the iteration at any time and

to continue later on. The niter is only useful for batch computing on

clusters or GRID where no interactive investigation is possible.

• zone epsrel : specifies QAGS relative accuracy for integration in each

interval. For rough results or when having difficulties with precision this

value can be changed to zone epsrel = 1.0e-6 or even larger. When

GSL library is compiled with long double precision then zone epsrel

= 1.0e-8 can be used.

• shift to origin rate : Specifies how oftenly the whole solution is

shifted to origin. This is related to calculation of B and its conver-

gence. Normally, default value can be used for all cases. For more

details consult [37].

• phi wall step : Adjusting the last point of the system when both

use finite epsilon = 1 and use adjust phi wall = 1 are set. Float-

ing wall condition (B.4) is gradually assured with continuous relaxation

of the system.
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B.2.3 Grid Parameters

Examining the nature of the solution of Eq. (B.2) and post-calculation of

the VDF in Eq. (B.3) and its moments the computational grid is established

with high refinements at both sides of the computational domain that is

normalized in the range [0, 1]. Equation (4.5) specifies the location of the

grid points. Changing the grid density is possible during the restart, as the

code includes a possibility to re-grid from one grid to another if any of the

following parameters are changed.

• np : number of grid points N . Practical values are in the range

[300, 3000] and are related to the grid density parameters. Besides its

precision, this is the most influential parameter to the computational

time in each iteration. In each iteration step N(N − 1) integration

subintervals are evaluated. For the default value of np = 1601 roughly

2.5× 106 integrals are evaluated.

• lambda1 : grid density λ1 when approaching x = 0. A higher density

at this point is mainly required due to the derived quantities in post-

calculations.

• lambda2 : grid density λ2 at the end of the calculation domain when

approaching the last point at x = 1.

• phi 1 : Boundary potential Φb initial value of the last point at x =

1. When use finite epsilon = 1 then this should be set to the

value of Φw calculated with limiting case use finite epsilon = 0

from Eq. (B.4). Potential profile is initialized in such way that it is

monotonous and ends at the phi 1. This value is (as initial value for

B) used only at initialization when psi.dat does not exist. Potential

values are initialized using

Φ[i] =
phi 1

1− exp(1)

[
1− exp(

i

np
)

]
. (B.5)

B.2.4 Code Parameters

Although separate codes for each type of investigation can be more appro-

priate and tailored with #pragma code inclusion statements, during our tests
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we found that such approach lead to an unmanageable code and confusion in

the final results, which required to store the entire source code as a reference

for each investigation. Code parameters overcomes such scenario with a con-

ditional inclusion of each piece of code in the investigation. This also means

that there is only one executable that behaves differently on the basis of the

code included. With prefix use we clearly state the boolean expression for

each portion of the code.

• use finite epsilon : specifies if generalized equation (B.2) is used.

When use finite epsilon = 0 simplified equation where ε = 0 is used.

This rules out calculation of the second derivative of a potential profile

and consequently speeds up the computing.

• use parabolic rewrite : code for parabolic interpolation from x = 0

to the length of profile specified by parameter parabolic range.

• use average smoothing : inclusion of smoothing code with the in-

fluential parameter smooth step.

• use fix right side : Sometimes we encounter -inf values for Φ with

a high density grid when approaching x = 1. Extrapolation algorithm is

employed when such case is detected and when use fix right side = 1.

The cause of such behavior is too high density at the “right side” of

the domain. When such case is detected in some of the last grid points,

they are corrected and normally this case does not repeat frequently.

Setting use fix right side = 0 can thus be set only when examining

the case when this condition occurs, otherwise it can be safely included

in th code at the negligible expense of CPU time.

• use adjust B : Adjustment of the B with B step can be disabled with

use adjust B = 0. This is normally not desired, except for investiga-

tions of the potential profile shift and influence of the prescribed B. It

should be noted that parameter B in global parameters is only an initial

value when no solution is written in psi.dat. When B is to be fixed,

psi.dat should be changed and not ppgplasma.xml.

• use regrid : The change of the current grid from the previous to a new

one is controlled by this parameter. Change of any Grid parameter can
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cause interpolation of existing grid to a new grid at the startup with a

lower or higher number of grid points.

• use shift to origin : Shifting of the initial solution at the startup

is controlled by this parameter. There are, so to speak, no problems

setting either value if using use adjust B = 1.

• use adjust phi wall : As a last step of assuring floating wall con-

dition (B.4) when use finite epsilon = 1 the last point is moved

towards calculated Φw with a soft step specified with phi wall step.

For initial relaxation with finite ε use adjust phi wall = 0 should

be used. After converged state is reached use adjust phi wall = 1

shoul be set for final convergence of the use finite epsilon = 1 case.

For more details consult mass ratio.

B.2.5 Diagnostic Parameters

Various intermediate results can be written during iterations and at the end

of the program. The text format is textual and compatible with diagnostic

tools like gnuplot, which is available at every computing cluster as a standard

tool.

• iter dat : dumps the whole potential profile into iter.dat at every

n-th iteration. The file is appended at each restart to preserve his-

tory. Normally this file can become rather large as it requires manual

deletion. Examining profile history within gnuplot is done with ev-

ery clause where the start and the increment of the plots are specified.

Dumping is disabled with iter dat = 0.

• psi dat : rate of psi.dat stamping. This file consists of all interme-

diate variables required for restart or to evaluate the potential profile

that is written with a zero shift and a shift variable separately. The

writing of the file cannot be disabled as it is always written at the end

of the program.

• psi1 dat : The writing of the last boundary Φs and B into psi1.dat

can be disabled with psi dat = 0. The last point of observation can

be an excellent stopping criterion for the case ε = 0. As it dumps
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only two values at each iteration it can be considered as a standard file

that is appended like iter.dat. Normally psi1 dat = 1 is used and

can grow substantially in size if numerous (over 200000) iterations are

required.

• pot dat : can be written at the end and contains just the potential

profile without restart variables as psi.dat.

• ds dpsi dat : Inverse derivative dx/dΦ related to the inverse elec-

tric field is written into ds dpsi.dat at the end of the program for

debugging purposes and evaluation of potential profile smoothness.

• dpsi ds dat : derivative dΦ/dx is written into dpsi ds.dat at the end

of the program for debugging purposes and evaluation of the potential

profile smoothness.

• ddpsi ds2 dat : The second derivative is written when using ε 6= 0

with additional columns for debugging Poisson’s equation.
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Dodatek C

Slovenski povzetek

C.1 Uvod

Zaradi enostavnosti se prehod med plazmo in steno običajno razdeli na dve

plasti: plašč s širino v rangu velikosti Debyjeve dolžine λD in predplašč z

značilno dolžino v rangu velikosti relevantne kolizijske oziroma ionizacijske

dolžine L. Običajno je

λD � L , (C.1)

kar omogoča ločeno obravnavanje obeh plasti. Taka poenostavitev je znana

kot dvodelna aproksimacija (two-scale approximation). Pod pogojem (C.1)

lahko za predplašč predpostavimo kvazi-nevtralnost, medtem ko za Debyjev

plašč predpostavimo razlikovanje naboja delcev.

Postavitev roba kvazi-nevtralne plazme, tj. meje (ali roba) plašča, je star,

vendar še vedno nezadostno rešen problem, ki je pomemben za fuzijo kot

tudi za laboratorijske plazme in plazme v vesolju. Meja plašča je površina,

do katere lahko predpostavimo kvazi-nevtralnost. Predplašč lahko modeli-

ramo z uporabo fluidnih aproksimacij (namesto vpeljave računsko zahtevnih

kinetičnih modelov) z relevantnimi mejnimi pogoji na začetku plašča. Ven-

dar je mejno površino še vedno nemogoče določiti z zadostno natančnostjo.

Meja plašča se lahko dovolj natančno določi le v asimptoti dvodelne limite.

Pri taki aproksimaciji se lahko meja plašča veže na stran plazme (neskončno

tanek plašč) kot mesto singularnosti električnega polja (znameniti Tonksov

in Langmuirov model [70] iz leta 1929) ali na stran plašča (neskončno velik

plašč) kot mesto izginjanja električnega polja (znameniti Bohmov model [12]

iz leta 1949). Oba modela sta bila prvotno izpeljana za primer “mrzlega”
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vira ionov (ioni, ki so narejeni v plazmi z zanemarljivimi hitrostmi v primer-

javi s hitrostmi elektronov) in sta bila kasneje razširjena v splošno sprejeti

izraz, ki pravi, da je rob plašča mesto, na katerem povprečna ionska hitrost

v smeri x (pravokotni na steno) večja ali enaka lokalni ionski zvočni hitrosti.

ui ≥
√
k(T ∗e + γTi)/mi , (C.2)

kjer je k Boltzmannova konstanta, mi masa ionov, T ∗e je t.i. “screening”

(”izločilna”) temperatura elektronov (T ∗e = ene/(kdne/dΦ)), Ti končna tem-

peratura ionov, Φ je lokalni potencial plazme in γ je ionski politropični koe-

ficient (definiran z dpi/dx = γkTidni/dx), z vsemi količinami na meji plazme

in plašča. Prav zaprav je izraz (C.2) dobljen s hidro-dinamično aproksimacijo

ioniziranega plina.

Zadnjih petdeset let so predpostavljali, da je γ konstantna v vseh fluidnih

modelih plazme, šele pred kratkim pa so ugotovili, da je γ prostorsko spre-

menljiva količina (odvisna od koordinate x v enodimenzionalnem primeru)

in ne le globalna konstanta. Kuhn et al. (2006) [40] so predvsem z ana-

litičnim pristopom pokazali, da asimptotična dvodelna limita γi (podpisano

i pomeni ione) izkazuje oster vrh prav na meji plazme in plašča. Jelić at al.

(2007) [32] so izvedli tako analitične kot numerične simulacije “particle-in-

cell”(PIC) (”delec v celici”) s plazmami končne ε(= λD/L), ki so potrdile

rezultate Kuhna et al. za “mrzlo” porazdelitev hitrosti ionov (Ti � Te).

Vendar so analitični rezultati, dobljeni za mrzle vire ionov, le omejene po-

membnosti za fuzijske plazme.

Z namenom, da se razširi veljavnost Tonksovega in Langmuirovega mo-

dela na primer končne temperature ionskega vira, sta Bissell in Johnson [10]

leta 1987 razvila primerneǰsi model. Vendar njuna rešitev v modelu ni do-

volj zanesljiva, saj preneha veljati za majhne temperature ionski virov, kar

je posledica aproksimacije jedra v integralni enačbi. Dodatno sta Bissell in

Johnson predpostavila robni pogoj v naprej in temelji na t.i. “posplošenem

robnem Bohmovem kriteriju”. Ta predpostavka je bila pred kratkim ekspli-

citno ovržena za vse primere (glej Riemann [53] in sklicevanja v članku).

Po drugi strani sta Scheuer in Emmert [61] leta 1988 uporabila bolǰsi pri-

bližek jedra, ki je razširil veljavnost Bissllovega in Johnsonovega modela za

nižje temperature ionskih virov, in tako dosegla dobro ujemanje prvotnega

Tonksovega in Langmuirovega modela. Dodatno pa nista vnaprej predposta-

vila meje predplašča, temveč sta ga določila ’a posteriori.’
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Vendar zaradi aproksimacij jedra obe rešitvi ostajata omejeni na nizke

ali visoke temperature. V pričujočem delu predstavljamo način, kako dobiti

rezultate za poljubno Tn/Te v širokem območju temperatur. To je izvedeno z

vpeljavo točnega jedra v integralni enačbi in numeričnim reševanjem. Doda-

tno prikazujemo naše PIC simulacije kot visoko zanesljiv referenčni vir naših

raziskav.

Φ(x)

x

x = 0 x = Lx = −L

Φb

Φw

Slika C.1: Shematski prikaz nekolizijske razelektritvene analize v enodimen-
zionalno (ravninski) geometriji s potencialom Φ(x) po vzpostavitvi plaščev.
Center plazme je na x = 0, steni na x = ±L.

Geometrija problema je simetrična enodimenzionalna planarno-vzporedna,

kakor je prikazano na sliki C.1.

Za primer “porazdelitve hitrosti mrzlega ionskega vira” je bila končna

temperatura izračunana analitično. Kot že omenjeno poprej, se izraz “mrzel”

nanaša na primer, ko se ioni v plazmi “rojevajo” z zanemarljivo temperaturo

v primerjavi s temperaturo elektronov. Ko se enkrat v modelu reši enačba

predplašča plazme (v plašču se lokalizira močno električno polje), se reši tudi

enačba v plašču z uporabo robnega pogoja, ki izhaja iz rešitve enačbe plazme.

Ob koncu preǰsnjega stoletja so bili poskusi reševanja dvodelnega pro-

blema za primer “porazdelitve hitrosti toplega vira ionov”, tj. za primer, ko

je temperatura vira ionov primerljiva s temperaturo pripadajočih elektronov.

V takem primeru Fredholmove enačbe modela ni možno analitično rešiti, ra-

zen v primeru, da vnaprej predpǐsemo posebno obliko porazdelitve ionskega

vira, za katerega je možen analitičen rezultat. Prvotna izpeljava fizikalnega
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problema v Bissllovem in Johnsonovem modelu [10] vodi v enačbo tipa

exp
(

(1 +
τ

2
)Φ
)

= B

∫ Φb

0

Ψ(Φ′) exp
(

(1 +
τ

2
)Φ′
)

K0

(τ
2
|Φ− Φ′|

)
dΦ′ ,

(C.3)

kjer je Ψ(Φ) neznana funkcija, Φb potencial na robu predplašča in K0(z) mo-

dificirana Besselova funkcija. To je integral Fredholmovega tipa prve vrste.

Vendar celo v dvodelni aproksimaciji končne porazdelitve ionov ni bilo moč

izračunati za poljubno temperaturo vira ionov, saj je bilo singularno jedro

integralne enačbe neprimerno za numerične izračune. V doktorskem delu

nameravamo rešiti to enačbo natančno, poleg tega pa rešiti razširjeni pro-

blem, ki smo ga formulirali, torej bolj “težaven” problem integro-diferencialne

enačbe v obliki

exp
(

(1 +
τ

2
)Φ
)[

1 + ε2 exp(−Φ)

Ψ3(Φ)

d2Ψ(Φ)

d2Φ

]
= B

∫ Φb

0

Ψ(Φ′) exp
(

(1 +
τ

2
)Φ′
)

K0

(τ
2
|Φ′ − Φ|

)
dΦ′ ,

(C.4)

ki je zasnovana na polni Poissonovi enačbi namesto na pogoju kvazi-nevtralnosti.

Ta integro-diferencialna enačba se lahko šteje kot posplošitev enačb Fredhol-

movega tipa, ki ni ne prve ne druge vrste, marveč je očitno nelinearna in v

literaturi ni klasificirana.

V zgornjih enačbah je B lastna vrednost problema, medtem ko sta ε in

τ prosta parametra.

C.1.1 Motivacija in namen disertacije

Avtor je bil dolgo časa vključen v izkorǐsčanje paralelnih računalnǐskih kapa-

citet povezanih s fuzijskimi raziskavami z namenom optimizacije Evropskih

računalnǐskih virov. Njegovo sodelovanje v projektu EUFORIA [42, 28] je

zahtevalo poglobljeno vključevanje pri preizkušanju nekaterih zahtevnih pro-

blemov v plazmi. Ker je bila Bissllova in Johnsonova enačba [10] za ta

namen velik izziv, je začel razvijati svoje programske pakete za rešitev pro-

blema. Tako pričakujemo, da bo pričujoča disertacija pomembno prispevala

k fuzijski skupnosti z nadgradnjo obstoječih rezultatov.

Rešitev zgoraj predstavljenega problema ima velik pomen za fuzijo in

splošno plazmo. Pri uporabi fluidnih kod, kot sta npr. SOLPS [15] in EDGE-
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2D, namenjena za simulacije v področju Scrape-Off Layer (SOL) [18] TO-

KAMAK [64] naprav, je namreč potrebno določiti meje računskega območja.

Robnih pogojev se na osnovi teorije fluidov ne da določiti natančno, saj je

potrebno uporabiti še kinetično teorijo. Rezultati iz kinetične teorije, ki

predpostavlja toplo ionsko populacijo, pa zahtevajo obsežne računske vire.

Raziskava problemov na obstoječih modelih je pokazala, da vpeljane apro-

ksimacije niso dovolj natančne in da modeli izkazujejo nekoliko različne re-

zultate.

Raziskave v disertaciji so usmerjene na dosego naslednjih ciljev:

• Jedro ne sme biti aproksimirano, temveč računano neposredno z upo-

rabo splošnih programskih paketov.

• Mreža za izračun profila potenciala mora biti zgoščena ne samo ob steni,

temveč tudi v sredǐsču simetrije tako, da se bo uporabila adaptivna

metoda integracije.

• Osnovne hidrodinamične količine, kot so ionska gostota, ionski fluks,

ionska energija in temperatura, se morajo izpeljati neposredno iz po-

razdelitve hitrosti na mreži, ki mora biti samoadaptivna v bližini sin-

gularnosti jedra integrala kot tudi v bližini singularnosti električnega

polja oz. inverzne vrednosti.

• Obstoječi modeli bodo razširjeni s t.i. končnim “finite-ε ≡ λD/L”, da

kvazinevtralnost ni striktno zagotovljena, temveč se uporablja komple-

tna Poissonova enačba namesto pogoja kvazinevtralnosti.

• Za dokaz se bosta izvedla dva izračuna, in sicer v širokem spektru

ionskih temperatur z upoštevanjem končne vrednosti ε in ε = 0

Hipoteza. Problem specialnega tipa Fredholmove integralno diferencialne

enačbe je potrebno reševati numerično, brez aproksimacij, da bi lahko dobili

razširjeno območje rešitev, ki so primerne za aplikacijo v fuzijsko in splošno

relevantnih plazmah za poljubno ionsko temperaturo in poljubne širine pla-

zemskega plašča.
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C.1.2 Pregled disertacije

V disertaciji so predstavljene raziskave in rešitve, ki temeljijo na naslednjih

predpostavkah:

• Poissonova enačba je postavljena za celotno območje razelektritve.

• Dvodelna aproksimacija je dosežena v limiti neskončno majhne Deby-

jeve dolžine v primerjavi z dolžino sistema, temperatura vira ionov ima

lahko poljubno vrednost.

• Temperatura vira ionov ima lahko poljubno vrednost.

• Ionizacijski mehanizem je lahko poljuben.

Poglavje 2 predstavlja fizikalne in teoretične osnove plazme in njeno mo-

deliranje. Relevantni nekolizijski modeli in njihove omejitve so razloženi v

poglavju 3. Razširitev temperaturnega območja za vroče vire ionov z našo

analitično–numerično metodo je predstavljena v poglavju 4. Posplošitev ob-

stoječih teoretičnih modelov na končne Debyjeve dolžine in razširitev naše

analitično-numerične metode je razdelana v poglavju 5. Rezultati dobljeni z

našo analitično-numerično metodo in naše referenčne PIC simulacije so pred-

stavljene v poglavju 6. Zaključki z diskusijo so podani v poglavju 7. Pomožni

podatki, ki pomagajo bralcu ali uporabniku naše kode, so podani v dodatkih.

C.2 Izvleček vsebine

C.2.1 Fizikalno ozadje problema

Plazma je kvazinevtralen plin z nabitimi in nevtralnimi delci, ki izkazujejo

kolektivno vedenje [17]. Plazmo lahko predstavimo z različnimi teoretičnimi

pristopi, ki karakterizirajo različne pojave v plazmi. Takšni modeli so:

• Aproksimacija gibanja posameznih delcev.

• Fluidne aproksimacije.

• Kinetični popisi plazme.
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Gibanje posameznih delcev lahko aproksimiramo v redko ioniziranih plinih,

tako da spremljamo posamezne delce brez medsebojne interakcije. Kinetična

aproksimacija se lahko uporablja v računalnǐskih simulacijah (PIC), ki ite-

rativno izračunavajo položaj vseh delcev v konsistentnem električnem ali

magnetnem polju, izhajajoč iz položaja in hitrosti delcev. Tak pristop je

zelo drag, saj vključuje mnoge tehnične omejitve, ki izhajajo iz simultanega

reševanja mnogih Newtonovih enačb skupaj z Maxwellovimi enačbami. Zato

je razvoj analitično-numerične metode, ki rešuje problem brez poglabljanja

v gibanje posameznega delca, zelo pomembna.

Kinetična Boltzmannova enačba je podana kot

v
∂fi
∂x
− e

mi

dΦ

dx

∂fi
∂v

= Si(x, v) , (C.5)

kjer je vir ionov Si(x, v) na desni strani zapletena funkcija, ki popisuje rele-

vantno mikroskopsko fiziko v modelu s koordinato x, hitrostjo v, elementar-

nim pozitivnim nabojem e, maso iona mi in elektrostatičnim nabojem Φ(x)

v odvisnosti od položaja x. Formalno rešitev Boltzmannove diferencialne

enačbe lahko najdemo z metodo karakteristik. Ko je po rešitvi enačbe (C.5)

profil potenciala Φ(x) znan, lahko s t.i.metodo trajektorij (razdelek 2.4),

določimo porazdelitev hitrosti ionov fi (VDF) in izpeljane vǐsje momente

kot so: ionska gostota

ni(Φ(x)) =

∫ ∞
−∞

fi(v)dv , (C.6)

ionski tok

Γi(Φ(x)) =

∫ ∞
−∞

vfi(v)dv , (C.7)

skupna energija ionov

Ki(Φ(x))) =
1

ni(Φ)

∫ ∞
−∞

v2fi(v)dv , (C.8)

smerna hitrost ionov

ui(Φ(x)) =
1

ni(Φ)
Γi(Φ) , (C.9)

in temperatura

Ti(Φ(x)) = Ki(Φ)− u2
i (Φ) , (C.10)
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kot ena najpomembneǰsih količin na katerem koli mestu x(Φ).

Po drugi strani pa Poissonova enačba podaja

− d2Φ

dx2
=

e

ε0

(ni − ne) , (C.11)

kjer je ε0 dielektrična konstanta vakuuma, in ni je gostota ionov ter ne gostota

elektronov. Ob pogoju kvazinevtralnosti, ko sta gostoti ni ' ne enaki lahko

Poissonovo enačbo zanemarimo, kar je bilo upoštevano kot poenostavitev v

večini dosedanjih analtično-numeričnih modelih.

C.2.2 Pregled stanja in obstoječih modelov

Problem nekolizijskih razelektritev je bil formuliran kot kvazinevtralen pla-

zemski pogoj z znano maxwellovsko obliko porazdelitve hitrosti vira ionov pri

neznani končni ionski porazdelitvi hitrosti. Osnovna naloga je iskanje ion-

ske porazdelitve hitrosti v področju kvazinevtralne plazme ob predpostavki

infinitezimalno tankega plašča na meji plazme. Razširjena naloga, ki doslej

še ni bila rešena, je analogni problem. Osnovni pogoj je, da ima plazemski

plašč končno debelino.

To pomeni podrobno reševanje Poissonove enačbe namesto uporabe po-

goja kvazinevtralnosti. Matematična formulacija fizikalnega problema se pre-

vede v reševanje integro-diferencialne enačbe Fredholmovega tipa. Za primer

“porazdelitve hitrosti hladnega ionskega vira” je bila porazdelitev hitrosti

izračunana analitično [70]. Izraz “hladen” se nanaša na primer, ko se ioni v

plazmi rojevajo z zanemarljivo temperaturo v primerjavi s temperaturo ele-

ktronov. Za primer “porazdelitve hitrosti toplega ionskega vira” pa Fredhol-

mova enačba ni rešljiva razen v primeru, da se vnaprej predpostavi posebna

oblika porazdelitve ionskega vira (jedro), ki vodi v analitični rezultat.

Aproksimacijo jedra in enačbe plazme s polinomsko vrsto sta prva iz-

vedla Bissell in Johnson [10], katerih rešitev je bila dobljena v omejenem

rangu temperatur ionskega vira. Sheuer in Emmert [61] (S&E) sta upora-

bila diskretizacijski pristop z aproksimacijo jedra, ki ga je mogoče analitično

integrirati po conah in nato uporabiti iterativno numerični postpek. Vseeno

S&E rešitev ostaja znotraj omejenega ranga temperatur ionskega vira. Obe

metodi z različnima pristopoma izkazujeta (v nasprotju s svojo trditvijo)

različne rezultate, iz katerih ni mogoče z gotovostjo postaviti zaključkov v

bližini plašča.
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Kuhn et al. [40] in Jelić et al. [32] so nedavno razvili koncept poli-

tropičnega koeficienta in pokazali, da je njegova maksimalna vrednost po-

vezana z mejo plazme v primeru plazem hladnega ionskega vira. Njihovi

rezultati še niso bili aplicirani za primer toplega ionskega vira, ker za zdaj še

ne obstaja zadovoljiva rešitev plašča plazme za ta primer.

Riemann [48, 49, 50, 52, 53] razvija teorijo vmesnega področja z name-

nom povezave med plaščem in plazmo. Prav tako je ta pristop omejen na

modele hladnih ionov z željo razširitve na polno rešitev s končnimi Deby-

jevimi dolžinami oz. s podrobnim reševanjem Poissonove enačbe namesto

uporabe pogoja kvazinevtralnosti.

Skupina raziskovalcev na Berkeleyju se ukvarja z reševanjem plazem-

skih problemov v različnih geometrijah z uporabo njihovih PIC (”Particle

In Cell”) simulacijskih kod [77, 43, 76]. Skupina v Innsbrucku prav tako

uporablja svoje verzije berkeleyjskih kod, ki se aplicirajo v bližini divertorja

z zahtevno fiziko, izvedeno v njihovi kodi BIT1 [73, 74, 71]. Tako primerjajo

PIC simulacije z numeričnimi rezultati, da s tem dobijo ustrezno povezavo

med simulacijskim eksperimentom in numerično računskimi napovedmi. Pri-

merjava bo torej možna takrat, ko bodo sploh na voljo zadovoljive računske

napovedi, kar je bil tudi namen te disertacije.

C.2.3 Analitično numerična metoda

V našem delu smo sledili pristopu S&E, vendar smo ga še dodatno izpolnili

z

• vpeljavo točnega jedra,

• z bolǰso ločljivostjo računske mreže,

• z vpeljavo zgoščevanja mreže v centru in na mestu neskončnega poten-

cial električnega polja,

• z vpeljavo dodatnih stabilizacijski pristopov za izbolǰsavo konvergence.

C.2.4 Razširitev teoretičnega modela

Osnovni analitični model, zasnovan na Bissllovem in Johnsonovem modelu

smo z novim pristopom razširili z upoštevanjem Poissonove enačbe (C.11), ki
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v normaliziranih koordinatah vpeljuje relativno debelino plazemskega plašča

ε = λD/L in razširjeno enačbo

B

∫ 1

0

dx′ exp [Φ(x′)− Φ(x)] exp
[τ

2
{Φ(x′)− Φ(x)}

]
K0

{τ
2
|Φ(x′)− Φ(x)|

}
= 1− ε2 exp(−Φ)

d2Φ

dx2

,

(C.12)

ki je ne moremo več okarakterizirati kot Fredholmovo ali Hammesteinovo

integro-diferencialno enačbo. Reševanje te enačbe smo se lotili s posplošitvijo

naše analitično-numerične metode, ki je bila najprej razvita za ε = 0.

C.2.5 Rezultati

V poglavju 5 in 6 so predstavljeni rezultati, ki so bili izpeljani iz rešitve

enačbe plazme (C.12) tako za ε = 0 kot za posplošeno rešitev ε > 0.
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Slika C.2: Profili potencialov v razširjenem območju temperatur ionskih vi-
rov, kot smo jih izračunali z našo analitično-numerično metodo (polne črte) v
primerjavi z ozkim območjem Bissllovega in Johnsonovega modela (pikčasto).

Rešitev enačbe (C.12) za primer ε = 0 prikazuje slika C.2. Primerjave

profilov potencialov z B&J in S&E modelom so pokazale dobro ujemanje v
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območjih, kjer so le-ti veljavni. Profil potenciala predstavlja “prstni odtis”

za vse nadaljnje izračune pomembnih količin v fiziki plazme.

Za limitni primer Tn = 0 je na voljo analitična rešitev v točki Φs =

−0.854. S primerjavo z Riemannovnim programom smo na primeru občutljive

izpeljane količine, kot je temperatura ionov, pokazali, da je mogoče z našo

metodo trajektorij iz profila potenciala izračunati singularne porazdelitve hi-

trosti ionov (slika 6.4), ki z integracijo vodijo v dovolj točne izpeljane količine

na poljubnem mestu x(Φ).

S primerjavo rezultatov Riemannovega programa, ki je omejen na Tn = 0,

vendar omogoča ε ≥ 0, smo našli povezavo med lastno vrednostjo sistema B

in dolžino predplašča xs. V poglavju 5 renormalizirane profile potencialov

za različne ε tudi primerjali (slika 6.16 in 6.17). Empirično smo razširili

Harrisonov in Thompsonov model na poljubne temperature ionskih virov,

kar je pomembno za aplikacijo teorije vmesne plasti med plazmo in plaščem,

ki je bila zaradi nepoznavanja ionizacijske dolžine doslej omejena le na primer

“mrzlih” virov ionov.

C.3 Sklepi

V disertaciji smo uporabili numerični pristop Scheuerja in Emmerta [61] za

razširitev Bissllovega in Johnsonovega modela [10] na poljubne temperature

ionskega vira. S&E pristop je še vedno omejen na nizke temperature ion-

skih virov zaradi omejitev v aproksimaciji jedra. Zato smo vpeljali natančno

jedro in hkrati povečali ločljivost in gostoto mreže in z dodatnimi stabiliza-

cijskimi ukrepi izbolǰsali konvergenco. Za potrditev numerične stabilnosti in

natančnosti so bili rezultati preverjeni v Mathematici in v naši programski

kodi, ki so izkazali odlično ujemanje v vseh numeričnih rezultatih. S fizikal-

nega stalǐsča smo ugotovili, da je končna ionska temperatura veliko manǰsa

od temperature ionskega vira. Ta ugotovitev je zelo pomembna v fuzijskih

napravah, kjer ioni prehajajo iz jedra (CORE) v področje SOL, kjer se ob

približevanju divertorjem na hitro ohladijo. Kot najpomembneǰse smo našli

mejo plazme xs kot funkcijo temperature ionskih virov. Pokazali smo, da v

plazmah s končno temperaturo ionskih virov maksimum politropičnega koe-

ficienta ne sovpada z robom plašča plazme, kot je to praviloma pri plazmah

z zanemarljivo majhnimi temeraturami ionskih virov, vendar jih lahko še ve-
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dno obravnavamo kot dober približek za mejo med plazmo in plaščem. To

dejstvo je lahko pomembno pri povezovanju fluidnih in kinetičnih parametrov

plazme v fluidnih kodah, kot je npr. SOLPS-B2 (glej npr. Lit. [15]).

Potrebno je poudariti, da so naši rezultati striktno veljavni samo do pre-

lomne točke kvazinevtralnosti. Za rešitev, ki velja za celoten sistem, je bilo

treba vpeljati vpliv električnega polja, tj.polno Poissonovo enačbo namesto

predpostavke o kvazinevtralnosti. Tak pristop vodi do integro-diferencialne

enačbe, ki smo jo izpeljali v naslednji obliki

1

B
=

1

1− exp(−Φ)ε2d
2Φ

dx2

1∫
0

exp

[
(1 +

1

2Tn
(Φ′ − Φ)

]
K0

[
1

2Tn
|Φ′ − Φ|

]
dx′ .

(C.13)

Za reševanje le-te smo izdelali novo kodo, ki razširja naš prvotni model za

ε = 0 na poljubne Debyjeve dolžine.

Za primer, ko je ε > 0, naše raziskave obsegajo široko območje temperatur

ionskih virov in za široko območje ε. To je prva taka raziskava z uporabo

analitično-numerične metode. Druge metode predpostavljajo vključevanje

PIC metod (glej npr. Krek. et al. [34]). Naš glavni rezultat za ε > 0 kaže,

da z rastočo temperaturo (npr. nad Ti, src ≡ Tn ∼ 1) profili potenciala

v normaliziranih in renormaliziranih koordinatah niso izrazito odvisni od ε.

Problem vmesnega področja med plaščem in plazmo, kot je to podano z

Riemannovimi pravili za končne temperature ionskih virov v enačbi (6.5), se

zdi v tem, da postaja nepomemben vsaj v fuzijskih plazmah.

Po drugi strani pa je za dovolj nizke temperature ionskih virov tudi sicer

na voljo drugačno skaliranje [Enačba (6.4)], ki ga je Riemann temeljito razde-

lal. Naše predpostavke o pomembnosti ε za visoke temperature ionskih virov

bodo podrobneje razdelane v našem nadaljnjem delu tako za maxwellovske

kot tudi za Water-Bag porazdelitve. Glede vpliva drugega odvoda potenciala

sklepamo, da z naraščajočo temperaturo ionskega vira rezultati postajajo vse

bolj neobčutljivi na ε. To je lahko tudi osnova nadaljnjih raziskav za pravilno

definicijo plazemskega plašča ne glede na izbrano metodo.

Naš pristop je nov z več pogledov. Najprej smo s PIC simulacijami pri-

dobili visoko zanesljive profile potencialov in porazdelitve hitrosti ionov, ki

doslej še niso bile narejene za Tonksov in Langmuirov model s končnimi tem-

peraturami ionskih virov in končnimi ε. Kvantitativna primerjava osnovne
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količine, tj. profila potencialov, kaže dobro ujemanje z rezultati Bisslla in

Johnsona v območju veljavnosti njunega modela. Novi rezultati, dobljeni

zunaj ranga, so prav tako predstavljeni skupaj z izpeljanimi količinami.

C.3.1 Prispevki k znanosti

Prispevke disertacije lahko strnemo v:

1. Bissllov in Johnsonov model je razširjen v t.i. “končni-ε ≡ λD/L” pri-

mer. To pomeni, da striktna kvazinevtralnost ni striktno zagotovljena,

razen za primer, ko je ε natančno nič. Jedro v našem pristopu ni

aproksimirano, marveč natančno računano. Stopnja “natančnosti” je

seveda odvisna od uporabljene programske knjižnice. Mreža za izračun

profila potenciala je zgoščena na steni kot tudi v sredǐsču simetrije pro-

blema.

2. Osnovne hidrodinamične količine, kot so ionska gostota, iztok, smerna

energija in temperatura, so izračunane neposredno iz porazdelitve hi-

trosti na mreži, ki je samoadaptivna v bližini singularnosti električnega

polja oz. njegove inverzne vrednosti.

3. Našo analitično-numerično metodo smo razširili na primer končnega ε

za primerjavo s simulacijami PIC, ki so primerne za simulacijo realnih

sistemov brez predhodne delitve problema na plazmo in plašč. Prikazali

smo dve vrsti rezultatov: za širok spekter temperatur ionskih virov

(0.01 < Tn/Te < 100) z ε = 0 in za več temperatur (0.01 < Tn/Te <

100) s končnim ε (ε = {10−5, 10−3, 0.01, 0.1}).

4. Z naraščajočo temperaturo ionov postaja odvisnost profila potenciala

od ε vse manǰsa.

Prispevki disertacije so bili objavljeni tudi v [39, 38, 37, 42, 28, 33].
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