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Abstract

The plasma-sheath boundary is confirmed to be a surface at which the ion directional velocity towards the wall
attains the ion-sound velocity (i.e., the “sonic point” or “Mach-1 point”). Expressing this statement quantitatively
is a complex task which has been solved to a satisfactory degree for low temperature plasmas only, where the ion
temperature is negligible with respect to the electron population temperature (i.e. “cold-ion” plasmas). In this paper
we tackle this problem for “warm-ion” plasmas, in which the ion temperature is arbitrary. The proposed method is
perfectly suited for fusion-relevant plasmas.
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1. Introduction

The plasma-sheath boundary in general plasma the-
ory is identified as a surface at which the ion directional
velocity ui towards the wall attains the sonic velocity
defined ascs =

√

kTe + γikTi [where k is the Boltz-
mann constant,Te,i are the electron and ion tempera-
tures respectively, andγi is the ion polytropic coefficient
function (Kuhn et al., 2006)] becomes supersonic. Both
ui andcs are quantities which today, in principle, can
be predicted and measured, at least in kinetic compu-
tational simulations. However, it is an expensive and
laborious task to apply such codes for complex plas-
mas as in fusion devices, so fluid models instead are
in widespread use, which, however, still do not involve
enough physics. Application of such codes makes it
important not only to declare what the plasma-sheath
boundary is but, rather, to expressquantitativelyeither
the ion-sound or the directional ion velocity, or both of
them. In particular, in numerical simulations of fusion
plasmas, where it is necessary to impose well-defined
boundary conditions for employing numerical codes,
e.g., SOLPS code (Coster, 2003), it is necessary to ob-
tain plasma parameters behaviors under various physi-
cal scenarios of interest in the scrape-off layer (SOL) re-
gion in Tokamak devices, and these still arenot known
with sufficient reliability. Defining the ion-sound (and
related directional) velocity is a complex task which has
been solved to a satisfactory degree for low tempera-
ture plasmas only, where, in addition, the ion temper-

ature is negligible with respect to the electron popula-
tion temperature, so that the precise knowledge of the
value of productγikTi is not so critical. However, it
has been shown by Kuhn et al. (2006) that even in plas-
mas in which the ions are born at rest (with zero initial
velocities), the ion temperature is not exactly zero, and
moreover, that the value of the polytropic coefficient at
the boundary might be several times higher than previ-
ously supposed in plasma physics. Obviously, in fusion
plasmas where the ion and electron temperatures are of
the same order of magnitude the relevancy of product
γikTi becomes a critical one, primarily because even a
particular value forγi is not generally known with reli-
ability.

Our approach to solve the problem of ion-
sound velocity is based on the extended formula-
tion of the Tonks-Langmuir theory of the plasma
arc (Tonks and Langmuir, 1929) as schematically
shown in Fig. 1 sketched for the plane geometry. The
problem consists of finding a potential profile together
with ion velocity distribution, provided the electron
density distribution is known, and the mechanisms of
ion production and energy gains and losses are well
defined. Schematic potential profileΦ(x) is shown in
the case of a negligibleε. This means that in a very
thin sheath region the main potential dropΦs − Φw is
located, (whereΦs - the plasma-sheath potential drop
as measured with respect to the center of discharge
is the point at which a sudden drop of the electric
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Figure 1: Schematic diagram of the T&L model in one-dimensional
(plane) geometry with potentialΦ(x). The plasma center atx = 0,
walls atx = ±L. Φs is the potential of the sheath edge,Φw is the wall
potential.

field E ≡ −1/Ψ(Φ) is situated, andΦw is the wall
potential to be found self-consistently from the parti-
cle flux balance). Tonks and Langmuir (T&L) found
that the region of plasma arc can be mathematically
split into “plasma approximation,” where strict quasi-
neutrality is assumed and “sheath approximation”, dom-
inated by the electric field. The corresponding two re-
gions of the plasma-wall transition layer are often re-
ferred to as “the pre-sheath” and “the Debye sheath”
regions. T&L found approximate solutions for these
two regions in plane, cylindrical and spherical geome-
tries with the assumption that the ions are generated
at rest. This is known as the ”cold” or ”singular” ion
source scenario, unlike the much more complex ”warm”
or ”regular” ion source case, which was formulated by
Bissell and Johnson (1987) (B&J) with the Maxwellian
ion source. Unfortunately, the B&J model solution turns
out to be limited to a narrow range of ion source tem-
peratures and rather unreliable due to approximations
aimed at obtaining the solution. Kos et al. (2009) and
Jelíc et al. (2009) have recently managed to solve the
B&J model without any restriction. However, the above
authors did not apply their model to various plasma
purposes, e.g., for a particular task to investigate fluid
and kinetic properties of the plasma-edge boundary in
terms of convenient expressions of the form of Bohm
criterion (Bohm, 1949), i.e., its possible kinetic gener-
alization (Harrison and Thompson, 1959). In addition,
no fluid generalization of the Bohm criterion for warm
ions was proven up to date. This is a result which will
emerge from the present work in a natural manner.

2. Theoretical backgrounds

The general Tonks and Langmuir (1929) problem
consists in simultaneously solving Boltzmann’s equa-

tion for ion VDF fi(x, v):

v
∂ fi
∂x
− e

mi

dΦ
dx
∂ fi
∂v
= Si(x, v) (1)

and Poisson’s equation for the potentialΦ(x):

−d2
Φ

dx2
=

e
ǫ0

(ni − ne) , (2)

where the collisional source termSi(x, v) on the right-
hand side is a function describing the relevant micro-
scopic physics involved in the model of interest, withx
the Cartesian space coordinate,v the particle velocity,
e the positive elementary charge,mi the ion mass, and
Φ(x) the electrostatic potential at positionx), and Pois-
son’s equation for the potential, respectively, whereǫ0
is the vacuum dielectric constant, andni , ne are the ion
and electron densities, respectively. We introduce the
normalized quantities of interest as follows:eΦ

kTe
→ Φ,

miv2

2kTe
→ v2, x

L → x, ni,e

ne0
→ ni,e,

Tn

Te
→ Tn, Ti

Te
→ Ti ,

√
2cs0 fi
ne0

→ fi , SiL → Si , wherecs0 ≡
√

kTe/mi andL
is any characteristic system length, (usually, the half-
length of the plane-parallel discharge). Subscripti,e
denotes that equation is equally applicable to ions and
electrons. Eqs. (1, 2) in the normalized form reads:

∂ fi
∂x
−dΦ

dx
∂ fi

(∂v2)
=

Si(x, v)
v

and −ε2 d2
Φ

dx2
= ni−ne , (3)

respectively. Hereε ≡ λD/L (with the Debye length
λD =

√

ǫ0kTe/ne0e2 and ne0 the electron density at
the center of the plasma) is the smallness parameter
of the problem. Assuming that the electron density is
Boltzmann-distributedne = exp(Φ), the procedure de-
scribed in Ref. (Kos and Jelić, 2010) leads to the solu-
tion in the form:

B
∫ 1

0
exp[Φ(x′) − Φ(x)] exp

[

1
2Tn
{Φ(x′) − Φ(x)}

]

× K0

{

1
2Tn
|Φ(x′) − Φ(x)|

}

dx′

= 1− ε2 exp(−Φ)
d2
Φ

dx2
, (4)

with B = 1
2π

√

mi

Tnme

n0
nav

exp
(

eΦw

kTe

)

, emerging from the

charge flux balance (see e.g. Kos et al., 2009) at the wall
with Φw the wall potential andnav the average ion den-
sity. Since here we are interested in the “vanishing-
ε” case, i.e., only in the quasineutral core plasma
and its boundary, after interchanging the dependent
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and independent variables we obtain the B&J integral-
differential equation, for unknown functionΨ(Φ′):

1
B
=

∫

Ψ(Φ′) exp

[(

1+
1

2Tn

)

(Φ − Φ′)
]

× K0

(
∣

∣

∣

∣

∣

Φ − Φ′

2Tn

∣

∣

∣

∣

∣

)

dΦ′ . (5)

Once functionΨ(Φ′) is known, either from numerical
calculations (Kos et al., 2009) or from analytic approx-
imation (Kos et al., 2011), solution to the above equa-
tion is obtained, it is possible to calculate the ion veloc-
ity distribution, which in normalized variables in accor-
dance to B&J reads:

fi(Φ(x), v) = B
∫

Φ′
Ψ(Φ′) exp(Φ′)

×
exp

{

−[v2 − (Φ′ − Φ)]/Tn

}

√

v2 − (Φ′ − Φ)
dΦ′ .

(6)

Furthermore, all the moments of ion VDF, i.e. the den-
sity n =

∫

f (v)dv, directional velocityu = 1
n

∫

f (v)vdv,
and ion temperatureT =

∫

1
n f (v)(v− u)2dv and all

higher moments like heat flux, energy flux etc., can be
found at any location, as well as the quantity〈v−2〉 =
1
n

∫

f (v)dv/v2 necessary for the calculation of the H&T
plasma-sheath condition. Additional derived quantity of
interest is the local polytropic coefficient functionγi(x)
(or equivalentlyγi(Φ)):

γi = 1+
ni

Ti

dTi

dni
≡ 1+

ni

Ti

dTi/dΦ
dni/dΦ

. (7)

Please note that although the physical properties of the
last quantity, as introduced in plasma physics for the
first time in Ref. (Kuhn et al., 2006), have been dis-
cussed in detail in e.g., Ref. (Kuhn et al., 2010), in the
present paper one can consider its introduction just for-
mally as a convenient abbreviation.

On the other hand, at the plasma boundary the stan-
dard procedure of expanding the charge density in the
sheathne−ni in terms of the potentialΦ(x) near the ”in-
finitely distant” pointxs/L→ ∞,Φs→ 0 (where condi-
tions (ne−ni)→ 0 anddΦ/dx→ 0 hold), yields approx-

imation ǫ02
(

d2
Φ

dx2

)2
=

1
2

d(ne−ni )
dΦ Φ

2 from where it follows

that the conditiond(ni−ne)
dΦ ≤ 0 must hold near the sheath

boundaryin the sheath, but with strict equality signat
the sheath. Since in collisionless sheath the density gra-
dient can be found from (non-normalized) Vlasov equa-
tions or, alternatively, from (non-normalized) systems
of fluid equations, the respective pairs of equalities can
be obtained in the forms:

dni,e

dΦ
= ± e

mi,e

∫

1
v

∂ fi,e
∂v

dv (8)

and
dni,e

dΦ
= ∓

eni,e

γi,ekTi,e −mi,eu2
i,e

. (9)

Therefore the marginal Bohm criterion (equality sign),
in kinetic and fluid approximations, for single charged
particles and single ion species plasmas, state:

1
mi

∫

1
v
∂ fi
∂v

dv+
1

me

∫

1
v
∂ fe
∂v

dv= 0 (10)

and
1

γikTi −miu2
i

+
1

γekTe −meu2
e
= 0 . (11)

respectively, when the quasineutrality condition at the
plasma sheath is employed. Assuming that the elec-
trons are near to a perfect thermodynamic equilibrium,
their density derivative in both kinetic and fluid mod-
els isdne/dΦ = −en/kTe. The ion derivative, however,
does not depend on the model, so the generalized Bohm

criteria in two models becomemi

(

〈v−2
i 〉

)−1
= kTe and

miu2
i = kTe + γikTi ≡ c2

s respectively, (where the term
〈v−2〉 is obtained after partial integration in kinetic in-
tegrals as shown in Eqs. (8) and (9)), or in normalized
variables, respectively:

(

〈v−2
i 〉

)−1
= 1 and u2

i = 1+ γiTi ≡ c2
s , (12)

where any velocity is normalized tocs0 and any temper-
ature to electron temperatureTe.

The problem arises with the kinetic quantity
(

〈v−2
i 〉

)−1
, which has no obvious physical meaning

sense. In fact, it has been argued in Ref. (Allen, 1976)
that the dispersion relation:

ω2
i

∞
∫

0

∂ fi(v)/∂v
v− ω/k

dv+ ω2
e

∞
∫

−∞

∂ fe(v)/∂v
v− ω/k

dv= k2 , (13)

(whereω2
i,e = ni,ee2/ǫ0mi,e represent the ion and elec-

tron plasma frequencies respectively, andω andk are
electrostatic plasma wave frequency and wave number
respectively) in the limit of long wavelengths is equiv-
alent to the marginal Harrison and Thompson crite-
rion (1959), which is here formulated in the form of
Eq. 10. Although Allen’s considerations can be read-
ily extended to the wide class of arbitrary electron ve-
locity distributions which satisfy∂ fe(v)/∂v = 0 in the
vicinity of the ion phase velocity it is, nevertheless, dif-
ficult to calculate explicitly the integrals appearing in
Eq. 10 in terms of measurable observables such as the
fluid velocities, temperatures and higher moments of
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VDF’s. There is just a single attempt towards this direc-
tion done by Riemann (1991), which was based on the
Taylor expansion if integrating the function for rather
”cold” ions, yieldingγi = 3, but it has been shown in
Ref. (Kuhn et al., 2006) that even in the cases where
the ion temperature is negligible butnot vanishing, the
value ofγi is considerably higher (7-8, depending on
the ion production mechanism) than proposed value
3, which is reserved for ideal adiabatic processes but,
strictly speaking, can be observed only for singular ion
VDF’s (Dirac δ-function) and ”water-bag” (Davidson,
1972) VDF’s.

The essentialnovelty of the present work is thatγ
maynot be considered a constant (taking values 1, 5/3,
or 3 for the isothermal, adiabatic flow with isotropic
pressure and 3 for the one-dimensional adiabatic flow),
as presented in any classic textbook on plasma physics,
but, rather, a function of the position, taking at the
plasma sheath a particular value to be found which,
moreover, assures that theexact equalitytakes place.
This means that the plasma sheath boundary, being a
point of the electric field singularity, is, indeed, the
“sonic”surface (Mach number equal to unity) according
to Stangeby and Allen’s hypothesis made in fluid the-
ory (Stangeby and Allen, 1970) and Allen’s hypothesis
argued for the kinetic model (Allen, 1976), but confir-
mation of this requires redefining ion sound velocitycs

via employing consequently the local value of the poly-
tropic coefficient. This task cannot be carried out for
general VDF’s but more readily with particular ones as
appearing in various discharge scenarios, and possible
further generalizations might be done only a posteriori,
i.e., once all such relevant scenarios will be investigated
one by one.

3. Results

Numerical and analytical solutions to Eq. (5), based
on the numerical procedure developed by the authors
with collaborators is shown in Fig. 2, where we show
the plasma potential profiles for varying the ion source
(neutral) temperatures (Tn) in a wide range, so as to
yield the final temperatures (Tn) which correspond to
plasmas under various conditions of practical interest.
Note that with an increased neutral temperature the po-
tential drops, as measured from the center (subscript ”0”
in notation bellow) to the edge of the plasma bound-
ary (subscript ”s” in notation bellow) decreases (higher
Tn means a smallerΦs). Quantitatively, this result is
shown in Fig. 3 where we show the relation between the
ion source temperature and the edge potential. It is im-
portant to point out that the electric field at the plasma
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Figure 2: Potential profiles obtained for different ion source (neutral
gas) temperatures.

boundary is always singular, meaning that the solution
to the plasma equation breaks there, i.e.,E(Φs = ∞).
Note Fig. 3 that for the zero ion-source temperature
the maximum possible potential dropΦs = −0.854...
is obtained, which is the well-known ”classical” T&L
limit. The solution to Eq. (5) is just a prerequisite

0.01 0.1 1 10 100
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

s

Tn

T&L-limit Tn = 0, s = -0.854...

Figure 3: The plasma-edge potentialΦs as function of the neutral
temperature.

for obtaining the actual ion velocity distribution, which
is essentially different from the temperature of ”par-
ent” particles, i.e., neutrals, which are supposed to be
Maxwellian. The final ion velocity distribution function
(VDF), as obtained from Eq. (6) is shown in Fig. 4(a)
for a particular example ofTn = 1. It is plotted just as
several places in the plasmaand in the sheath region. It
should be noted that in the case where ions are created
exclusively from the ionization (”collision-free” or CF-
T&L model) or the ion VDF is always characterized by
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Figure 4: Ion velocity distribution functions at several positions in
the discharge (dashed lines indicate VDF’s in the sheath region) for a
particular case ofTn = 1

a sharp peak, while in the case of ion source from col-
lision dominated source (“charge-exchange” CX-T&L
model) the ion VDF resembles to a Maxwellian [for
cold ion sources one can see Ref. (Kuhn et al., 2006),
while for warm ion-CX-source a T&L model has not
been developed yet].

To obtain the profiles of fluid quantities versusx or
versusΦ(x) one needs to calculate all the moments of
VDF’s at sufficient number of points for each particular
ion source temperature. In Fig. 5 we show a family of
that way calculated actual ion-temperature profiles, for
various ion-source temperatures. Firstly, it is evident
from this figure how the actual ion temperature behaves
in B&J model. Namely, it is always much below the in
source temperature, and decreases from the center to-
wards the edge, with a more or less sharp ”knee” at the
plasma boundary.

The decrease of the temperature in the sheath is
due to the effect of VDF’s ”cooling” when acceler-
ated in a strong sheath electric field, as explained in
Ref. (Kuhn et al., 2006), For the present paper, in fact,
we even do not need to know plasma parameters far
from the boundary. On the contrary,at and near the
plasma boundary we just need an excellent resolution,
i.e., high density of points at which we calculate fluid
quantities, so that the derivatives of such curves (tem-
perature and density), can be safely obtained, and this is
not a trivial numerical task. Some noise might appear in
derivatives that should be filtrated appropriately. Nev-
ertheless, we obtain these quantities i.e., ion density, di-
rectional velocity, temperature, energy, and derivatives
enough reliably, so that the ion polytropic coefficient
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Figure 5: The ion temperature profiles as calculated from sufficiently
dense sets of velocity distributions as function of potential, each curve
for a particular ion source temperature.
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Figure 6: Ion polytropic coefficient plotted as functions oflocal
plasma potential for various ion source temperatures.

function profiles can be calculated via Eq. (7), as illus-
trated in Fig. 6. We show there theγi(Φ) curves only in
the plasma region for better resolving this part from the
sheath region. It seems that the plasma sheath boundary
coincides with the point of inflections ofγi(Φ) curves,
but it still has to be proved. Nevertheless, we describe
the qualitatively concealed part, i.e., thatγi(Φ) func-
tions decrease slightly in the sheath and again start to
increase near the sheath boundary due to adiabatic cool-
ing, tending for very high potential drops in the sheath
to γ(Φ → −∞) = 3, as proven in Ref. (Kuhn et al.,
2006). In Fig. 7 the dependence ofγi on the ion tem-
perature at the plasma boundary is shown. This figure
is the first result ever presented onγi(Ti). In future we
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Figure 7: The dependence ofγi,s on the local ion temperature at the
plasma edge-sheath boundary.
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Figure 8: Profiles of ion-sound velocity according to fluid formula
cs =

√

1+ γiTi obtained for two ion temperatures which attain values
much lower than electron and comparable to isothermal plasma cases.

need to obtain such curves for various physical scenar-
ios, i.e., supposed ion velocity distributions for possi-
ble generalization of fluid theory with warm ions at the
sheath edge, which is at the moment completely missing
in plasma physics.

We have prepared all the elements to calculate the
ion-sound velocity. First, in Fig. 8(a) we show two com-
plete profiles of ion-sound velocity according to fluid
formulacs =

√

1+ γiTi obtained for two ion tempera-
tures, which attain values much lower than electron and
comparable to isothermal plasma cases, respectively.
This is a brand-new result in plasma physics, where
up to now the ion-sound velocity was, as a rule, cal-
culated under assumptions of thermodynamic equilib-

0.0 0.5 1.0 1.5 2.0 2.5
1.0

1.2

1.4

1.6

1.8

2.0

 c s

 u i

Ti, s

cs

ui

Figure 9: Comparison of ion-sound velocity with the ion directional
velocity at the plasma edge as a function of the ion temperatureat the
plasma sheath boundary.

rium with constant valuecs =
√

1+ γiTi assumingTi-
constant andγi = 1, 3, and 5/3 by a rule. Such ap-
proach might be quantitatively acceptable for certain
plasmas, but in general, it is not correct. In Fig. 9 we
show thecrucial result of comparing the ion sound ve-
locity at the plasma sheath with the ion directional ve-
locity there. Namely, the hypothesis of strict equality of
these two velocities at the plasma-sheath boundary done
by Stangeby and Allen (1970) for the fluid model and
later on by Allen (1976) for the kinetic model has never
been confirmed explicitly for warm-ion cases. We show
here, by presenting both quantities as calculated inde-
pendently from each other, that the identityui = cs at the
plasma sheath boundary holds (within the numerical er-
ror done during determining exact values at the plasma-
sheath boundary). The present approach is intrinsically
a new one, identified so far only in cosmic plasmas [see
e.g., Refs, Pudovkin et al. (1997); Cohen et al. (2007)],
but never tackled and elaborated self-consistently be-
fore. In this particular situation, it demonstrates the ne-
cessity of employing the values of local polytropic co-
efficient function at the plasma sheath boundary, which
is rather a sharp function of local potential, taking at the
plasma sheath boundary a value which strongly depends
on the ion temperature. However, for fusion plasmas,
this dependence is not so critical because the value ofγi

converges somehow to a constant value 1.5, which can
be used for the first trial approximation in Scrape-Off
Layer fluid codes.
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4. Summary and Discussion

The fluid Bohm criterion for the case of finite ion-
source temperature has never been proved in fluid ap-
proach neither theoretically nor numerically. Any at-
tempt on finding the sheath and plasma link in such
plasmas was a physical oversimplification of the phys-
ical scenario in previous fluid models. This is due to
fact that in the previous century, by rule, a local ther-
modynamic equilibrium was supposed near the plasma
boundary in fluid models, even though we have been
aware of the fact that such an assumption, while pos-
sibly numerically acceptable, is physically intrinsically
incorrect. In order to overcome this limitation, a ki-
netic approach expressed in kinetic generalization of the
Bohm criterion, formulated by Harrison and Thompson
(1959), has been considered, but never actually em-
ployed, due to the lack of its physical practical value.
Emerging quantity,〈v−2

i 〉
−1/2 equals tounperturbedion

sound velocity fornegligible ion temperature. It coin-
cides with the directional ion velocity also in the case
of perfectly ”cold” ions, and, according to Riemann
(1991) can be expressed as〈v−2

i 〉
−1/2 ∼ 1 + 3Ti for

negligible ion temperatures but, otherwise, cannot be
expressed as anything meaningful. Unfortunately, this
“otherwise” meansalwaysi.e., not only in real plasmas
but also in any fairly consistent plasma-sheath model.
In fact, quantity〈v−2

i 〉
−1 has no physical meaning and no

practical value. On the contrary, the fluid theory based
on physical processes known in advance and a velocity
distribution function obtained either from a mathemati-
cal model (like here) or from computational simulations
(see e.g., Jelić et al., 2007) containing the missing link
between the fluid and kinetic theory, i.e., the concept of
polytropic coefficient function proposed by Kuhn et al.
(2006, 2010) instead of dealing with constant values,
yields results which are fully self-consistent. We have
shown here that in the case of an arbitrary ion temper-
ature, the ion sound velocity can be found providedTi

andγi are known at the sheath boundary. Moreover, we
have shown that the ion directional velocity is identi-
cal to ion-sound velocity based on these data, and this
suffices to calculate the main quantities of interest in
any plasma, i.e., the particle and energy to the bound-
aries,withoutcalculating sheath parameters. However,
it should be pointed out that our results emerge from a
collision-free model, and might not be applicable to col-
lision dominated plasmas. Fortunately, the results ob-
tained in Ref. Kuhn et al. (2006) for both CF and CX
models clearly indicate that in the case of ”cold” ions
(born at rest) the results regarding both the ion poly-
tropic coefficient function and the ion-sound velocity

are very similar, in spite of the fact that the ion ve-
locity distributions in these two physical scenarios are
rather different in shape, and this might be similar with
”warm” ion sources as well. Of course, the degree of
validity of such an assumption has to be investigated in
a warm-ion plasma in detail in the near future.
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