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Abstract
Recently Baalrud et al [Physics of Plasmas14 042109
(2007)] investigated a plasma under conditions of non-
ambipolar flow, under special plasma confinement sce-
nario where all electrons are lost to one boundary and all
positive ions to another boundary. More generalized sce-
nario of ambipolar flow to different boundaries was in-
vestigated by Jelic et al. [Contrib. Plasma Phys.43/2 111
(2003)] via developing a self consistent theoretical model
for calculating the plasma potential, plasma density and
electron temperature. Both approaches rely on so called
zero dimensional approximation. Since the problem of
ambipolar flow is an important one in space, laboratory
and fusion plasmas as well as in Langmuir probe diag-
nostics, we employ a one-dimensional Particle in Cell
(PIC) code to simulate the plasma behavior in the pres-
ence of an electrically biased object in higher dimension-
ality. Simulated results agree well with theoretical pre-
dictions and experimental results, but may be considered
as more reliable ones.

1 Introduction

The possibility to control the plasma flow at local bound-
aries, rather than to the walls, via using additional biased
electrodes immersed in plasmas, has been recognized for
a long time in laboratory technology-oriented and fusion-
related plasmas. In hot-filament discharges like double
plasma devices (DPDs), as well as in simplified (single)
or extended (triple) devices, the effects of mechanical and
electrical supports and additional electrodes, probes, ad-
ditional wire grids for electron heating, electrostatic con-
finement grids, as well as the filament cathode arrange-
ments, the ionizing electron beams, the local magnetic
cusp installations at the plasma boundaries, constant ex-
ternal magnetic fields, etc., were studied via using both
theoretical and experimental method. There is also a long
history of electrostatic confinement of plasmas in spher-
ical geometries as designed for nuclear reaction applica-
tions where various electrically biased objects in combi-
nations with other local fields and structures take role.
An electron absorbing boundary can be represented also
by a Double Layer (DL) structures instead of a solid sur-
face. Such DL formations of anode type (also known as
“fireball” or “fire-rod”) were studied in detail in the past
(see e.g., recent work of Baalrud et al from 2009 [1]. As

a rough common conclusion it turns out that there are
at least three important properties of thelocal plasma
boundary which either influence or completely determine
the plasma parameters, namely (i) theeffectivesurface (ii)
geometry of surface and (iii) the electric bias of surface.
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Figure 1: Symbolic picture of a plasma chamber with immersed
anode of variable size

Up to date self-consistent theoretical considerations
of the influence of electrically biased objects are based
on so called “two-point model”, known also as a “zero-
dimensional approximation” applied to a rather general
geometry as symbolically presented in Fig. 1. The plasma
parameters are calculated at a point far from all bound-
aries. The case with vanishing electrode size [2] yield
the “similarity rule” based on which the plasma parame-
ters can be calculated as a function of the single quantity
named as the “discharge efficiency”eΦp defined via ex-
pression:

eΦp ≡
1

naϑ
V

A
,

√

mi

me

, (1)

wheree is the elementary charge,mi andme are the ion
and electron masses respectively,V is the plasma volume
andA is the total plasma surface bounding volumeV ,
na is the density of the background gas andϑ a quantity
related to the semi-empiric expression for the ionization
cross-section expressed in the form

σi(K) = ϑ
9(eΦI)

2(K − eΦI)
,K(K + 8eΦI) (2)

with K the kinetic energy of electrons andeΦI the first
ionization level,ϑ a characteristic constant of the kind of



gas used. The values ofϑ calculated on precise results
of cross-section measurements done by Stefan et al and
Stefan and M̈ark [3]. For convenience the discharge effi-
ciency is normalized as

eΦI
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≡ naϑeΦI

V

A

√
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me

, (3)

which quantity has been shown [2] to scale asνI/νL
with νI,L the characteristic frequencies of plasma volume
gains and surface losses. Taking into account the pres-
ence of a positively biased (electron absorbing) electrode
immersed in plasma, the complete problem has been solved
via calculating mentioned plasma parameters consistently,
as functions of the electrode bias and with variable elec-
trode size [4]. Here we employ the model of Baalrud et al
for calculating the plasma potential as follows, however,
with relaxed boundary conditions.

For themonotonic ion sheaththe current continuity
follows from equality of ion and electron currents to the
anode and wall (with areasAa andAw respectively and
with respective fluxesΓi andΓe), according to relation
Ii = Ie whereIi = ΓiAe + ΓiAw = andIe = Γe,Th =
Ae exp(Va − Φ) +Aw exp(eΦ), with Φ the bulk plasma
potential far from the anode and with the anode bias volt-
ageVa. Having in mind thatΓi = n0α

√

kTe/mi (where
α is a function which can be approximated by a constant
of the order of unity) and that the electron current is given
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Figure 2: Theoretical plasma potential as a function of the an-
ode size, obtained for anode voltagesVa = 5, 10, 15 kTe

by Γe = n0

√

kTe/2πme the solution of last equality
yields a first branch of solution for the plasma potential as
measured to the ground potentialΦw = 0 for theelectron
reach sheathin the form:

eΦup

kTe

= − ln

[

α

√

2πme

mi

− a

]

(4)

Second branch of solution, i.e., for the case of monotonic
ion-reach sheathis:

eΦdn

kTe

= − ln

[
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]

(5)

wherea ≡ Aa/Aw ≃ Aa/(Aw + Aa) is introduced for
shortness. Superscript “up” means that the plasma po-
tential is above the anode potential and superscript “dn”

is the opposite case. The intersection point (superscript
”cr”) of the two branches is simply

acr = α
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2πme
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+

(
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)

exp(
−eΦa

kTe

) (6)

Thus we obtain two branches of solution which are pre-
sented in Fig. 2 withacr =

√

2πme/mi, for α = 1.

2 Particle in Cell Simulations

Increased computational resources promise efficient em-
ployment of kinetic simulations known as Particle in Cell
(PIC) simulations (see e.g., [5, 6] and references therein)
which, in principle, can resolve plasma behavior at any
local point including the regions of strong electric fields,
like plasma sheaths and double layers. Te code is elec-
tromagnetic but for the present purposes we take into ac-
count only electric field. The main loop of the code starts
from an initially empty, or filled by ions and electrons dis-
tributed randomly in configuration-velocity space (phase-
space) computational domain in a prescribed electric field,
and (1) solves the Newton equations of motion either for
each particle (or for so-called super-particles – clusters
of particles) via integrating them during properly chosen,
enough short, time-step∆t. Then (2) a new particle bal-
ance is established where particle loss/gain at boundaries
have been taken into account. and new positions and ve-
locities of all new and old particles are found are found.
follows (3) the interpolation of particle sources to grid
and (4) integration of field equations. . After (5) inter-
polating new fields to particles the main loop is finished.
Monte Carlo Collision method (6) for binary collisions is
available between steps (2) and (3). The computational
power, however, is still not sufficient for many scenar-
ios of interest, i.e., for both complicated geometries and
demanding physical scenarios. This restriction can be
sometimes solved via using proper simplifications. Here
we employ 1D-3v (one-dimensional in space and three-
dimensional in velocity coordinate) XPDP1 code [6] for
attacking a quasi-3D case as in Fig. 1.

For the present purpose we adapt the code for solv-
ing one half of the system as sketched in Fig.3. We em-
ploy fine biased grids (e.g.,G1 andG2) with adjustable
bias voltages for achieving the desired degree of reflec-
tion (transparency) from either to another chamber. This
is similar to the arrangement of a so called double plasma
device (DPD). One can control the ion and electron fluxes
and the plasma potentials in both sides of DPD’s, i.e., to
obtain a variety of potential profiles. Via choosing proper
transmission degrees for ions and electrons we simulate
an effective electrode size biased at a proper potential.
With this arrangement the plasma potential can be held
bellow the bias voltage of the boundary (the grid). If both
gridsG1 andG2 are biased at the same arbitrary poten-
tial, and the distance between grids is bellow the Debye
lengthλD =

√

ǫ0kTe/ne2, a high transparency corre-
sponds to the of a small electrode, while high reflectivity
corresponds to an electrically floating wall.

The length of computational region is varied between
3 and 6 cm and the number of equidistant grid cells in the
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Figure 3: Our basic diagram illustrating employment of biased
grids (e.g.,G1 andG2) for controlling the plasma potentials in
both sides of a DPD’s, i.e., for obtaining a variety of profiles
via applying proper grid’s biases. In this work we deal with an
ideally symmetric discharge with positively biased grids at the
equal potential with variable grid transparency starting from 1
and decreasing to zero for obtaining critical valueacr for which
the plasma parameters are dominating by the biased object.

system has been typically several thousand in order to
obtain the length of one cell from2 × 10−5 m to 1.25 ×
10−6 m. For one time step we take typically5× 10−11 s.
The electron temperature is kept in a wide in the range
1eV - 100eV but the ionization neither with beam nor
with thermal electrons has been taken into account. The
production rate of charged particles has been set to such a
strength that in the steady state the density of charged par-
ticles in the middle of the system is ranging from approx-
imately1×1014m−3 - 1×1018m−3. In this way, i.e., by
varying eitherne orTe the Debye length, has been varied
for more than two orders of magnitude. Typically the De-
bye length is kept much smaller than the system length,
i.e., being no more than some percents of it. although the
cases without real quasi-neutrality (plasma diodes) were
obtained as well. Typically there are 4 - 5 cells per Debye
length. On the other hand we kept about several tens of
calculation time steps per electron plasma period which
is typically of the order of severalGHz. The number of
physical particles per computer particle (super particle)
was also varied. The number of cells per Debye length
is kept between 4 and 5 and several tens of time steps
per electron plasma period are maintained. Initially the
system is empty. The steady state is typically reached
after about5 × 10−5 physical seconds. Computer time
for reaching this steady state, however, was1011 - 1012

longer. In order to get relatively smooth curves all the
results have been averaged over a large number of times
steps. The period of time steps also defines spectral res-
olution of the amplitude spectra of the plasma potential
oscillations. With increased densities the procedure be-
comes considerably more time-consuming.

3 Results

Firstly, we show results of a series of simulations with
electrode biased at10 V with respect to with grounded
wall performed with the electron temperaturekTe = 1 eV .
The profiles are obtained for increased electrode size. The
spatial profiles of the plasma potential and the electron
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Figure 4: Potential profiles (a) and density profiles as simulated
for several anode sizes with fixed anode voltageΦ = 10 V and
kTe = 1 eV

density were recorded as shown in Fig. 4. The critical
anode surface is expected to be close to reduced model
in which we predict the value defined byAa/Aw = acr.
It is obvious from Fig. 4 that for very small anode sur-
faces (high grid transparency) there is an electron reach
plasma sheath formed near the grid (anode) while for
enough large (but still relatively small) collecting surface
this behavior in the vicinity the surface, i.e., at both sides
the sheaths become the ion-reach. At the same time the
density which correspond to potential profiles slightly de-
pends on the anode (grid) bias.

In Fig. 5 we show the normalized plasma potentials in
the middle of the system obtained from PIC simulations
in comparison with the theoretical predictions, as func-
tions of the anode effective surface, for Hydrogen and
Argon, and found that the two type of results agree with
each other qualitatively well. For further direct compari-
son of PIC results with theoretical and experimental ones
we have available set of all data for Argon. In Fig. 6
we plot these data as obtained for mentioned pressure
0.04/Pa in the full-length DP machine. Inspections of
the valueAa/Aw where the anode potential equals the
plasma potential give an estimation ofAa/Aw ≃ 0.013
for both PIC results and self consistent theoretical calcu-
lations whereas for experimental resultsAa/Aw ≃ 0.02.
Lets recall in mind that the last result is nearest to the
value Aa/Aw ≃ 0.0187 obtained for Argon obtained
with strongly simplified assumption. It is difficult to say
whether the famous factorα ≃ 0.6 proposed by Baalrud
et al., should be taken into account, since this value would
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Figure 5: Normalized plasma potentials in the middle of the
system obtained from PIC simulations in comparison with the
theoretical predictions, as functions of the anode effective sur-
face, for Hydrogen and Argon.

lead to considerable discrepancy between theory and PIC
simulation results on one side and experimental measure-
ments on another side. On the other hand our choice
α = 1 is also under the question for simple reason that
in the present work it was not calculated self-consistently
asα = α1α2α3 but just taken as an estimation. In this
light the good agreement of the valueAa/Aw ≃ 0.013
obtained in both PIC and theoretical prediction might be
regarded as surprisingly good. Having in mind that all
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Figure 6: Re-normalized plasma potential for Argon plasma, in
the middle of the discharge as obtained from PIC simulations,
in comparison experiments and theoretical results

the three kind of results are obtained under rather vari-
ous assumption’s and technical solutions the similarity of
the results seems to yield an estimation of what means
“large” and small positively biased electrode. It is obvi-
ous, that the plasma potential is, in any model, consider-
ably perturbed by small biased object. This holds even in
the caseAa/Aw → 0. From this point of view a posi-
tively biased electrode is always “large”. A jump occurs
near a value, which is related to the boundary conditions
via a week functionα, which is possible to approximate
with a constant near unity, to be determined in future self-

consistently, for any particular discharge scenario sepa-
rately.

4 Summary

We present the results of employing Particle in Cell nu-
merical simulation for investigating possibilities to con-
trol the plasma parameters by immersing a small posi-
tively electrode biased at the highly positive voltage (with
eΦa ≫ kTe). There are some quantitative discrepan-
cies between theoretical, experimental and PIC simula-
tion results presented here. Namely, the theoretical model
is based onzero-dimensionalgeometry with a specified
mechanism of ionization originating from beam atom im-
pacts and thermal ionization. The experimental method
is essentiallythree-dimensionaland many processes like
e.g., charge exchange which were not taken into account
in theoretical model take role. In addition, and most im-
portant in experiment is the fact that the effective surface
for plasma losses at the wall is just estimated and it is
not a simple task to make very precise calculation on the
actual plasma losses area. On the other hand, the present
PIC model also simplified one regarding the physical pro-
cesses taken into account in simulations. Simulations are
performed inone-dimensionalgeometry and are based on
a free-fall model of collisionless discharge which might
be regarded as an over-simplification when applied to an
arbitrary 3D geometry. Having in mind these facts we
may conclude that the agreement between the three kind
of method is better than it may be expected.
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