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This article presents an approach to solving a special Fredholm-type integral equation of the first
kind with a particular kernel containing a modified Bessel function for applications in plasma
physics. From the physical point of view, the problem was defined by Bissell and Johnson �B&J�
�Phys. Fluids 30, 779 �1987�� as a task to find the potential profile and the ion velocity distribution
function in a plane-parallel discharge with a Maxwellian ion source. The B&J model is a
generalization of the well-known Tonks–Langmuir �T&L� �Phys. Rev. 34, 876 �1929�� discharge
model characterized by a “cold” ion source. Unlike the T&L model, which can be readily solved
analytically, attempts to solve the B&J model with a “warm” ion source have been done only
numerically. However, the validity of numerical solutions up to date remains constrained to a rather
limited range of a crucial independent parameter of the B&J integral equation, which
mathematically is the width of a Gaussian distribution and physically represents the ion temperature.
It was solved only for moderately warm ion sources. This paper presents the exact numerical
solution of the B&J model, which is valid without any restriction regarding the above-mentioned
parameter. It is shown that the ion temperature is very different from the temperature of the ion
source. The new results with high-temperature ion sources are not only of particular importance for
understanding and describing the plasma-sheath boundary in fusion plasmas, but are of considerable
interest for discharge problems in general. The eigenvalue of the problem, found analytically by
Harrison and Thompson �Proc. Phys. Soc. 74, 145 �1959�� for the particular case of a cold ion
source, is here extended to arbitrary ion-source temperatures. © 2009 American Institute of Physics.
�doi:10.1063/1.3223556�

I. INTRODUCTION

Integro-differential equations of the Fredholm type are
of high interest to plasma physics. While in some special
cases they can be solved analytically, they in general cannot
be solved without employing computational means. There is
no general rule for solving such equations even when using
combined analytic-numerical methods and techniques. In-
stead, each particular case must be tackled by means of par-
ticular computational tools, which depend on the structure of
the equation, and primarily so on the particular kernel of the
integral. However, the kernels, which appear in particular
physics problems, can be so complicated that even with
fairly good analytic-numerical algorithms huge computa-
tional resources must be employed to obtain a satisfactory
solution during a reasonable period of time. Within the
framework of our research on parallel computing we have
encountered a particular problem related to general and
fusion-oriented plasmas, namely, the Tonks–Langmuir1 prob-
lem of collisionless discharges extended to the scenario when
the ions within the discharge region are created at each point
with a finite temperature. The number of various particles
with a spectrum of various velocities at some point of obser-
vation is mathematically described by the velocity distribu-
tion function �VDF�, which is a result of “counting” all the

particles that are capable of “visiting” that place, and their
velocities. The VDF at some point of observation should be
either measured in a real experiment, obtained from numeri-
cal simulations, or calculated via a suitable analytic-
numerical method. All of these alternative approaches are
extremely demanding and, consequently, have been solved
only under certain restrictions, which lead to a limited valid-
ity of the results.

Our work deals with the analytic-numerical solution of
an integral equation with a special kernel emerging from the
physical scenario modeled first by Bissell and Johnson
�B&J� in 1987.2 The essential parameter of their problem is
the ion-source temperature emerging from the Maxwellian-
shaped ion-source velocity distribution at the place of their
creation, i.e., “birth.” Due to mathematical and numerical
difficulties, B&J approximated their kernel by Carleman’s
formula via the Chebyshev polynomial expansion and, con-
sequently, the validity of their solution remained limited to a
rather narrow range of ion-source temperatures. In 1988,
soon after the work of B&J had been published, Scheuer and
Emmert �S&E� �Ref. 3� found a better kernel approximation
and in addition applied a different analytic-numerical method
for solving the B&J model. With the new kernel approxima-
tion, S&E extended the range of validity of the solution to
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small ion-source temperatures, but for high ones the solution
was still missing. Although the S&E extension of the solu-
tion to small ion-source temperatures was a considerable im-
provement from the analytic-numerical point of view, it at-
tracted scarce academic attention for a number of years,
primarily because the real problem of interest remained to
solve the B&J problem for arbitrarily high ion-source tem-
peratures �also applicable to, e.g., fusion plasmas� and not to
just reproduce the Tonks and Langmuir �T&L� limit which
was, indeed, well solved mathematically and interpreted
physically. The use of currently available parallel-computing
clusters now enables one to solve demanding integro-
differential equations with much higher accuracy over a rea-
sonable period of time, the only limitation being the accu-
racy of currently available software libraries. First, our work
demonstrates such utilization of computer resources. Second,
we present important new results related to the Bissell–
Johnson model, namely: �i� we solve it with the exact kernel
instead of using an approximate one, �ii� our solution is valid
for an unlimited range of ion-source temperatures, and �iii�
the accuracy of the solution is substantially increased by em-
ploying a high-density nonuniform computational grid with
extremely high refinement near the boundaries of the com-
putational region.

In addition, we obtain the ion VDF at any arbitrary point
of the plane-parallel discharge, which enables us to calculate
its moments �density, temperature, and higher-order mo-
ments� with special attention to the edge of the system,
where boundary conditions for a discharge require a high
degree of accuracy. From a practical point of view, this is
especially important in applications to the scrape-off-layer
�SOL� region near divertors in tokamak devices �see, e.g.,
Ref. 4�. For the basic plasma physics determining the plasma
boundary for arbitrary ion-source temperatures in the plasma
approximation �i.e., assuming strict quasineutrality�, it is,
however, of crucial importance for further development of
the intermediate region, which matches the sheath and
plasma solutions obtained in asymptotic two-scale approxi-
mation �see, e.g., Ref. 5 and references therein�. In fact, for
the intermediate-scale approach the plasma approximation
cannot be obtained by an alternative method such as particle-
in-cell �PIC� simulations, where the simulation domain in-
cludes the physical boundary, i.e., an inherently unresolved
plasma-sheath boundary. For such purposes, “idealization” of
strict quasineutrality via the B&J or similar models is still of
high interest.

Section II is a short reminder on the theoretical back-
ground of the existing theoretical and numerical methods
with a description of upgrades applied in the present work. In
Sec. III we present the results obtained via our approach.
These results are summarized and discussed in Sec. IV
where, in addition, the strategy for further development to-
ward a complete plasma and sheath problem. The details of
the theoretical and analytic-numerical method employed are
given in the Appendices.

II. THEORETICAL BACKGROUND

A. General considerations

The general formulation of the problem as defined by
T&L in 19291 for plane-parallel geometry consists in simul-
taneously solving Boltzmann’s equation for the ion VDF,
f i�x ,v�,

v
� f i

�x
−

e

mi

d�

dx

� f i

�v
= Si�x,v� , �1�

�where the collisional source term Si�x ,v� on the right-hand
side is a function reflecting the relevant microscopic physics
involved in the model of interest, with x the Cartesian space
coordinate, v the particle velocity, e the positive elementary
charge, mi the ion mass, and ��x� the electrostatic potential
at position x�, and Poisson’s equation for the potential,

−
d2�

dx2 =
e

�0
�ni − ne� , �2�

where �0 is the vacuum dielectric constant and ni,e are the ion
and electron densities, respectively, with additional assump-
tions and proper boundary conditions imposed as described
in Appendix A. In particular, T&L recognized that the prob-
lem can be split into and solved separately in the region
where strict electric quasineutrality, ni−ne=0, may be as-
sumed �plasma or presheath region�, and the region where
quasineutrality is largely violated and a strong electric field
occurs �the sheath region�.

At this point we introduce the normalized quantities of
interest as follows:

e�

kTe
→ �,

miv
2

2kTe
→ v2,

x

L
→ x,

ni,e

ne0
→ ni,e,

Tn

Te
→ Tn,

Ti,src

Te
→ Ti,src,

Ti

Te
→ Ti, �3�

�2cs0f i

ne0
→ f i, SiL → Si,

where cs0��kTe /mi and L is any characteristic length of the
system, �usually, the half-length of the plane-parallel dis-
charge�. Let us note that in the articles by B&J and S&E both
normalized quantities Ti and ��1 /Ti are used in parallel,
while we prefer to avoid � wherever possible. Moreover, in
our notation Tn is the neutral temperature, which is identical
to the ion-source temperature Ti,src. In the work of B&J this
temperature was denoted as Ti leading to serious confusion.
In fact, the final ion VDF turns out to be very different from
the initial one. As an obvious example of such confusion,
B&J defined in their work �Eq. �8�� the ion-sound velocity
containing in fact the neutral temperature instead of the real
�effective� ion temperature as should be calculated from the
ion velocity distribution. So their Eq. �8� turns out to be
nonsense emerging from confusion notation only. To avoid
such problems we use the notation Ti,src�Tn for the ion
source temperature, and Ti will be exclusively reserved for
the final effective ion temperature as calculated from the fi-
nal VDF.
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Throughout the text we will use either non-normalized
or normalized quantities. To avoid any possible confusion we
will state explicitly in each case which of them is used in a
given context. Additional normalized quantities will appear
later in a natural way, but at this point we use the above ones
for the purpose of rewriting Eqs. �1� and �2� in the normal-
ized forms

� f i

�x
−

d�

dx

� f i

��v2�
=

Si�x,v�
v

, �4�

− �2d2�

dx2 = ni − ne, �5�

respectively. Here,

� � �D/L �6�

is the Debye length �D=��0kTe /ne0e2, where ne0 is the elec-
tron density at the center of the plasma. The approximation
�→0 is called the “asymptotic two-scale limit,” which was
first elaborated in a mathematically rigorous manner by
Caruso and Cavaliere in 1962.6 Equation �5� shows that for
�→0 the quasineutrality condition holds, describing the
plasma or presheath region with an infinitely thin sheath
manifesting itself by the “sheath singularity.” If, on the other
hand, the “sheath scaling” x /�D→x is employed, the sheath
becomes infinitely wide. T&L simply started from the
quasineutrality condition and simplified the problem further
by assuming that all ions are born with zero velocity �“cold”
or “singular” ion-source velocity distribution�. Furthermore,
they assumed that the discharge is symmetric about the cen-
ter �position x=0, with ��0�=0 as illustrated in Appendix
A�. In addition, the floating-wall condition �i.e., the equality
of electron and ion fluxes at both sides of the discharge� is
imposed, with the assumption that the electron density is
Boltzmann-distributed:

ne = ne0 exp� e�

kTe
� , �7�

where Te is the electron temperature. In any case, the above
normalization is an arbitrary one. This is because the length
�or half length� of the system L can be renormalized depend-
ing on particular needs, �e.g., to the ionization length for
applying intermediate-scale theory�. Following B&J and the
subsequent work of S&E, we temporarily disregard alterna-
tive possibilities and proceed to work in non-normalized no-
tation. The general formal solution of Eq. �1� can be found
by integrating Eq. �1� along the characteristics of the kinetic
equation, which are identical with the collisionless particle
trajectories and satisfy the differential equation

dv
dx

= −
e

mi

d�

dx

1

v
, �8�

with which Eq. �1� transforms into

dfi

dx
=

Si

v
. �9�

Upon integrating Eq. �8�, the characteristic passing through
the point �x ,v� can be expressed in the form

v� = sgn�v���v2 +
2e

mi
�� − ��� , �10�

where �x� ,v�� is any generic point on the characteristic,
��=��x��, and �=��x�. Integrating Eq. �9� along the char-
acteristic �10� from �xin� ,vin� � �its point of entrance into the
system� to the point �x ,v�, the formal solution is found in the
form

f i�x,v� = f i,in� + C�
xin�

x dx�

v�
S�, �11�

where f i,in� = f i�xin� ,vin� �, Si�=Si�x� ,v��
=S�x� , sgn�v���v2−2e���x��−��x�� /mi�, and 	 indicate that
the integration is carried out along the characteristic. In the
present context, f i,in� =0 because we assume that no ions come
from the walls. The ion density is an integral of the ion
velocity distribution over velocity

ni��� = �
−�

+�

f i�x,v�dv

= �
I
�

−�

+�

dv

� �
xin�

x Si�x�,sgn�v���v2 −
2e

mi
��� − ���

sgn�v���v2 −
2e

mi
��� − ��

dx�,C �12�

where summation over I takes into account various ion popu-
lations reaching the observation point either from the left or
right the right-hand side. The particular method of trajecto-
ries used in this work for obtaining all the ion populations
contributing to the total ion velocity distribution is elabo-
rated in Appendix B.

B. Bissell and Johnson’s original solution

While T&L solved the problem with a “cold” �singular�
ion source via an expansion method, Harrison and Thompson
�H&T� �Ref. 7� in 1962 found the exact solution for the
singular ion source. B&J, however, supposed that the ion-
source distribution is also Maxwellian, i.e., regular in the
sense of the finite ion source temperature Tn�Ti,src

S�x,v� = Rnnne� mi

2�kTn
exp�−

miv
2

2kTn
� , �13�

where R is ionization rate as denoted by B&J and nn is the
neutral gas density �which is assumed to homogeneous over
the discharge�. The particular scenario of B&J, assuming a
Maxwellian ion source with the ionization rate proportional
to the electron density, is elaborated in detail in Appendix A.

In their original work, B&J performed the integration
over velocity space and interchanged the independent and
dependent variables using the identity
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dx� �
dx�

d��
d�� � �d��, �14�

so that Eq. �A8� from Appendix A takes the form

1

B
= 


0

�b

�����exp��1 +
1

2Tn
��� − ����

� K0�� − ��

2Tn
�d��, �15�

with

����� =
dx�

d��
and x��b� = 1. �16�

The details on obtaining Eq. �15� are given in Appendix B.
B&J used a switch function

J��� − �� = exp����� − ����1 − tanh���� − ��/���/2

+ �1 + tanh���� − ��/���/2, �17�

which led to their main equation

1

B
= 


0

�b

d�������F��� − �� , �18�

with the kernel

F�	� = J�	�exp�	�exp� �

2
�	��K0� �

2
�	�� . �19�

They applied a complicated mathematical procedure assum-
ing an approximation of such a kernel via a Chebyshev poly-
nomial series, yielding a system of linear equations. They
claimed that their approximation is more or less valid in the
narrow range of Tn between 0.5 and 4. We repeated their
derivations and in Fig. 1 we plot their kernel approximation
with our corresponding results where we have taken into
account that there were certain mistakes in the polynomial
coefficients given by B&J.

Carefully following the B&J approach, we calculated a
closer approximation of the kernel. One can notice differ-
ences between the approximated and the exact kernel. The
B&J approach is a specific one and the system of linear
equations to be solved is closely related to the approximation
they used. B&J concluded from the quantities derived that
the approximation to the kernel of the plasma equation for
Te /Tn
2 was too poor to be usable. However, the range of
validity of the kernel is too narrow both for plasmas with
small temperatures and plasmas with ion-source tempera-
tures sufficiently high for fusion application.

C. The Scheuer and Emmert approach

S&E used the B&J equation in a different form, in which
the kernel contains the unknown function. We express the
basic relation of their approach as

1

B
= 


0

1

exp��1 +
1

2Tn
��� − ����K0�� − ��

2Tn
�dx�.

�20�

This is a more universal approach, yet they also introduced
an approximation of the kernel due to integration problems
with the logarithmic singularity. They approximated K0 with

K0��u�� = − ln� �u�
2
��

i=0

6

bi� �u�
3.75

�2i

+ �
i=0

6

ai� �u�
2
�2i

�21�

and expanded the logarithmic term to get an analytic formula
in piecewise linear zones. In addition, S&E employed a non-
uniform grid near x=1. The polynomial approximation �21�
from Ref. 8 is valid only for u�2. The relative error in the
range �0,2� is under 10−7, while for u
2 another polynomial
approximation, with a factor e�u� /��u�, is used that leads to
difficulties in the analytical evaluation of the zones. Similar
to B&J, kernel-approximation errors lead us to the conclu-

FIG. 1. Comparison of the approximated and exact kernel F�	� of the B&J
equation: �a� B&J approximation and �b� our approximation with the exact
kernel �dashed� for various values of �=Te /Tn. The error of the approxima-
tion increases with increasing �’s. While our approximation is better near
	=��−�=1, it is still evident that errors at the center are significant and
cannot be lowered with a polynomial approximation of order eight.
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sion that present the approaches cannot be used for wide
temperature ranges.

Nevertheless, the S&E approach turns out to be perfectly
suited for both our and future numerical investigations. In
fact, unlike the purely analytic method by H&T, the subse-
quent analytic-numerical method by Riemann �see, e.g., Ref.
5�, and the B&J numerical method, where the electric field is
the main quantity of interest, the S&E method is based on
finding the potential profile without interchanging dependent
and independent variables. This method is a fairly universal
one appearing suitable for solving numerically a wide class
of integro-differential equations, which could not be classi-
fied as Fredholm ones �and probably could not be classified
at all-e.g., as Hammerstein ones, as we will see for the
finite-� case�. Following the S&E approach, we proceed
our numerical investigations with our own refinements as
follows.

D. Our numerical approach applied

In our work we basically follow the approach adopted by
S&E. However we have improved it by �i� using the exact
kernel, �ii� applying a much better resolution of the compu-
tational grid, and �iii� employing high grid refinements at
both the zero and the infinite-electric-field sides of the
discharge.

Following the “trick” applied by S&E, we introduce the
identity

1/B � exp��0� , �22�

so Eq. �20� takes the form

exp��0� = 

0

1

exp��1 +
1

2Tn
��� − ����

� K0�� − ��

2Tn
�dx�, �23�

where the simple formal identity �−��=�−��= ��−�0�
− ���−�0� has been introduced. Equation �20� can be rewrit-
ten into

exp�− �1 +
1

2Tn
���

= exp�− �0� � 

0

1

exp�− �1 +
1

2Tn
����

�K0�� − ��

2Tn
�dx �24�

or, after taking the logarithms of both sides, into a form
suitable for numerical processing,

�1 +
1

2Tn
�� = �0 − ln�


0

1

exp�− �1 +
1

2Tn
����

� K0�� − ��

2Tn
�dx�� , �25�

with K0�z� the zeroth-order modified Bessel function of the
second kind, which is singular at every x��x. The unknown

function of interest, ��x�, which is integrated over the nor-
malized unit interval, also includes a known high gradient at
x=1, while at x=0, due to symmetry, it is expected to have a
zero gradient.

Details on the numerical method applied and implemen-
tation aspects are given in Appendix C.

III. RESULTS

The Fredholm equation with the B&J kernel has a solu-
tion for the electric potential lying between the analytic value
of the Tonks–Langmuir limit ��
�s=−0.854 at the sheath
entrance� and zero �at the center plane of symmetry�. The
particular value of �s depends on the ion-source tempera-
ture. In Fig. 2 we show the potential profiles as calculated in
a wide range of ion temperatures �solid lines� in contrast to
B&J �scattered�. It can be seen that both sets of B&J and our
results closely overlap in the range of temperatures where
B&J obtained results. There is, however, a small discrepancy
for Tn= �0.5,1 ,2 ,4�, which may be ascribed to B&J errors in
the kernel as we demonstrated in Fig. 1. There is an addi-
tional error in the presentation of B&J results in Fig. 2,
which originates from the fact that we did not have their
exact data available but used scanned data from Fig. 4 from
their article2 instead. This issue, however, is not of primary
importance to the present work, since we are interested in the
method without approximation. Our next step is to compare
our results for the electric potential with those obtained with
a more reliable kernel as employed by S&E. We do not show
a comparison of our potential profiles with S&E results since
they presented one single curve, i.e., for Ti=1. In addition,
the shape of their single curve differs from our results and
thus also from those of B&J. Our other investigations �to be
published� performed via the PIC simulation9,10 �in particular
with BIT1

11� have shown that the S&E curve perfectly fits the
case with a uniform ion source rather than with one propor-
tional to the electron density. It seems that, in fact, S&E by

FIG. 2. �Color online� Potential profiles for various ion-source temperatures
as obtained by us with the exact kernel �solid lines� and by B&J with their
approximate kernel �scattered�.
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mistake presented an actually excellent result, but probably
obtained for a different discharge scenario.

The dependence of the potential �s at the quasineutral
plasma �presheath� boundary on the ion source temperature
is shown in Fig. 3. The end or breaking point of the solution,
i.e., the plasma boundary �s, corresponds to the place where
the electric field becomes infinite. In Fig. 3�a� we show the
dependence of the breaking point in a “zoomed” range where
the S&E results are taken from their article. It is clear that
our results overlap with the S&E results. The small discrep-
ancy can be ascribed to the fact that our method is a very
advanced one, i.e., based on at least 1600 cells �whereas
S&E used 100 cells� and that we used the exact kernel in-
stead of their approximate one. Our solution in an extremely
wide range of ion source temperatures is shown in Fig. 3�b�.

Once the potential profile is known, it determines the
actual velocity distribution at the observation point, provided
the source velocity distribution is exactly specified, as is the
case with the B&J model and the present investigation. Fig-
ure 4 illustrates our velocity distributions for the cases of a
small and moderately high ion source temperatures in com-

parison with the cold-ion-source case �T&L�. It is seen that
for small ion source temperatures the shape of the velocity
distribution resembles the T&L limit, while with higher ion
source temperatures it resembles the S&E results.

Once the ion velocity distribution as a function of posi-
tion �or equivalently, of the potential corresponding to the
latter� has been found, one can calculate from it fluid quan-

FIG. 3. The plasma sheath boundary potential in a limited range of ion
source temperatures, where the S&E approximate kernel is valid, in com-
parison with our results �a�, and in a wide range of the ion source tempera-
tures �b�, where we employed the exact kernel.

FIG. 4. Analytic velocity distribution of T&L in the case of the zero-ion-
temperature source in comparison with our results with a finite ion tempera-
ture source.
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tities such as density, particle flux, total energy flux, tempera-
ture, and higher moments of velocity distribution such as
heat flux, etc., as described in Appendix B. While B&J made
a step forward by analytically preparing the integrals of the
moments of the VDF for faster numerical calculation, S&E
�Ref. 3� performed direct numerical calculation using some
kind of “brute force.” The latter is a more expensive yet
more universal method, which is applicable to arbitrary ana-
lytic and experimental velocity distributions, so we prefer to
apply it in our present and future work. In Fig. 5�a� we illus-
trate the ion density profiles in a logarithmic presentation for
three particular temperatures �solid lines� in comparison with
the electron density, which, by the definition of the model, is
Boltzmann-shaped. As expected, the ion densities follow the
straight line in the region of quasineutrality and more or less
sharply change such behavior at the positions of the field
singularity �plasma boundary�.

In Fig. 5�b� we show the corresponding dimensionless
ion fluxes �defined by Eq. �B7��, also calculated directly
from the ion velocity distribution. The ion flux is seen to
increase in the plasma region but to become practically
independent of the sheath potential to the left of the plasma
boundary. In the sheath region, however, relevant assump-

tions of the model become invalid, so they should be
ignored.

As pointed out in Appendix C, the quantity B is calcu-
lated from equality Eq. �C9� iteratively in a numerical pro-
cedure. With the density calculated from the velocity distri-
bution, it turns out a posteriori that the product Bni is
constant, i.e., with a high degree of accuracy equals unity.
The result of calculating B as a function of the source tem-
perature at an arbitrary point �e.g., near the center of the
system� is illustrated in Fig. 6�a�.

The next step is to calculate the normalized average
plasma density over the system from 	0

1ne���s��ds, and based
on this, to calculate the wall potential with known B. The
result is shown in Fig. 6�b� for a wide range of ion source
temperatures. These results tally well with those of B&J;
however, our results are not limited to the ion source
�neutral� temperatures.

Figure 7 shows the effective ion �final� temperature Ti as
a function of the local potential for various ion source tem-
peratures Tn. The upper figure shows the distribution of the
ion temperature in a wide range of ion source temperatures,
while the bottom figure represents a “zoom” for a very cold
ion source in comparison with a result obtained by using
Riemann’s software12 for the limit of the zero ion source
temperature. It is evident that high ion source temperatures

FIG. 5. �a� Ion and electron densities in a logarithmic presentation as a
function of local potential ��x�. �b� Ion flux as a function of ��x�.

FIG. 6. The dependence of B �a� and of the wall potential �b� on the ion
source temperature.

093503-7 Extension of the Bissell–Johnson plasma-sheath… Phys. Plasmas 16, 093503 �2009�



yield a final temperature, which is smaller by an order of
magnitude. This fact is of high importance for both general
plasma physics and for fusion investigations, where the ions
from the core region penetrate the SOL region with rather
high temperatures but their temperature might suddenly drop
therein. For a better insight into this effect, Fig. 8 shows the
dependence of the effective temperature both at the center of
the discharge and at the plasma edge as a function of the ion
source temperature. It is apparently strange that the final ion
temperature is lower by almost an order of magnitude than
the ion source temperature. This is a consequence of the ion
“cooling” due to energy losses at the boundary. Our result on
the final temperature Ti is in good agreement with the results
given by B&J for several particular cases.

Some doubts may appear regarding the numerical calcu-
lation of the moments from the final velocity distribution due
to its singular character. We resolve this dilemma via by
comparing Ti as calculated with extreme precision via Ri-
emann’s software and with our direct integration method. We
used our own software �to be further elaborated in our next
article, which will extend the present work to the case of
finite temperature and finite ��, which is based on Eq. �27�.
In the example in Fig. 9 this software is applied to the case
of an extremely small value of � ��=10−5� for an extremely

small ion source temperature �Tn=0.002�. The temperature
profiles obtained by means of these approaches are illus-
trated in Fig. 9.

Regarding the normalization lengths of the plasma, it
should be noted that such various lengths can be defined in
an arbitrary manner. In fact, it is clear from the condition
	f�v�dv�	Cf�v�d�v /C�=1 that in the Boltzmann equation
we can also use any normalization of the velocity distribu-
tion with an arbitrary constant C, as well as put any other
normalized length x /�, with � an arbitrary constant length,
instead of x /L. The “proper” normalization should be de-
cided on the basis of further purposes. While the first nor-
malized length �x /L� just corresponds to a calculation do-
main extending from 0 to 1, the second one �x /�� is desired
to be a physical quantity of interest for particular purposes.
According to H&T �Ref. 7� and Self,13 the proper normaliza-

FIG. 8. Ion temperature at the center and the edge of the plasma for various
ion source neutral temperatures.

FIG. 9. Comparison of the results obtained via Riemann’s program �solid
line� and ours obtained via the direct integration method used in the present
work �scattered�. For this comparison we used our software based on Eq.
�27� applied to the case of an extremely small �=10−5 for an extremely
small ion source temperature �Tn=0.002�.

FIG. 7. Profiles of the ion temperature Ti �defined according to Eq. �B10��
for various ion source temperatures.
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tion in the limit of vanishing ion source temperature and
vanishing � is an analytic value that depends on the ioniza-
tion mechanism and in the case of ionization proportional to
the electron density yields the exact value xs=0.405. . .
�plasma boundary, where electric field becomes singular�.
Riemann, however, prefers to use a slightly different normal-
ization �see e.g., Ref. 5�, which yields the said value multi-
plied by �2, i.e., xs=0.572. . .. By comparison of the deriva-
tion of B&J with that of Riemann we found that the
renormalization

x

L
→

x

�
� B�2�Tn �26�

�where Tn is normalized to Te� is equivalent to rescaling the
system to the ionization length �. The result is shown in Fig.
10, however, not only for the “classical” case of vanishing
ion source temperature but, instead, for arbitrary values
thereof. Our “empirical” extension of the Harrison–
Thompson result to an arbitrary ion source temperature is
very important for application to the theory of the interme-
diate plasma-sheath region, which due to lack of any data on
the ionization length in the case of the finite ion temperature
up to now was limited to the “cold” ion source case only �see
e.g., recent works by Riemann5�.

After obtaining all desired quantities like the ion density
and temperature, one is also capable to calculate other de-
rived quantities. One such quantity, which has recently been
introduced in plasma physics by Kuhn et al.14 and Jelić
et al.15 is the “local polytropic coefficient,” which is of high
importance to plasma sheath determination. In fact, for engi-
neering purposes the definition of the plasma sheath bound-
ary as the point where the ion-sound velocity equals the fluid
ion velocity might be of considerable interest. However, de-
termining the ion-sound velocity requires the knowledge of
local “ion polytropic coefficient” . So far there has not been
a reliable model to treat this quantity for the regular ion
source temperature case. Our solution enables one to further
investigate this issue in detail in the near future. Our Fig. 11
is just an illustration of the behavior of the polytropic coef-

ficient, which is important in local ion sound velocity
calculations. It has been suggested by Kuhn et al.14 that the
maximum of  may be a possible means of defining the
plasma-sheath boundary. Our Fig. 11 confirms that this “co-
incidence” still holds for low ion source temperatures �curve
Tn /Te=0.1�. Apparently, the deviation from this rule be-
comes strong as the ion temperature increases.

IV. DISCUSSION AND CONCLUSION

In this work we have used S&E’s �Ref. 3� numerical
approach to extended the B&J model2 to arbitrary ion source
temperatures. However, due to their approximation of the
kernel, the S&E approach is still limited to plasmas with low
ion temperatures. So we have employed an exact kernel and
at the same time refined the approach of S&E, i.e., applied a
high-density and a high-resolution grid. For confirmation of
numerical stability and precision, our results were obtained
in both MATHEMATICA and in our own package, yielding an
excellent agreement in all numerical figures. From the physi-
cal point of view we found that the final ion temperature is
much lower than the ion source temperature. This is quite
important in fusion devices, where ions penetrate from the
core to the SOL region and then, moving toward the divertor
plate, become rapidly cooled. Most significantly, we found
the plasma edge xs as a function of the ion source tempera-
ture. Finally, we have shown that in finite-temperature
plasmas the maximum of the polytropic coefficient in fact
does not coincide with the edge of the plasma sheath as
this is the rule in plasmas with negligible ion-source tem-
peratures, but still can be considered as a good estimation
of the plasma-sheath boundary. This fact might be of con-
siderable importance to linking fluid and kinetic plasma
parameters in fusion fluid codes like e.g., SOLPS-B2 �e.g.,
Ref. 16�.

It should be pointed out that our results are strictly valid
only up to the breaking point of the quasineutrality. For a
solution which is valid for the whole system it would be
necessary to involve the effect of the electric field, i.e., to

FIG. 10. Renormalized presheath length xs as a function of the ion-source
temperature.

FIG. 11. Illustration of the local ion polytropic coefficient for several ion
source temperatures.
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start from the full Poisson equation instead of using the
quasineutrality condition. Such an approach leads to the
integro-differential equation, which we have obtained in the
form

1

B
=

1

1 − exp�− ���2d2�

dx2

�

0

1

exp��1 +
1

2Tn
��� − ����

�K0� 1

2Tn
��� − ���dx�. �27�

In order to solve this equation we are developing a new
program package, so the results will soon be available. In
view of future tasks, we have found here that the eigenvalue
of the problem, which considerably overlaps with the classic
value of H&T, can be further refined by more expensive
calculation runs.
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APPENDIX A: B&J MODEL

Physically, the B&J model implies that the ions are cre-
ated from single electron-neutral impact-ionization, i.e., the
ionization rate is collisionless, proportional to the electron
density. Other basic sources were elaborated by Self.13 With
Maxwellian ions the T&L model appears to be a Dirac �
function as a limiting case of exp�−x2 /a2� /a��, with a→0.
With a Maxwellian source one can perform an integration
over the velocity. The result is

ni =� mi

2�kTn
Rnnne � �

I

 exp�1 +

e��� − ��
2kTn

�
�K0� e��� − ��

2kTn
�dx�. �A1�

The ion flux at the boundary obtained from the continu-
ity equation d�i /dx=Rnnne, which after integration takes the
form

�i = Rnn

0

L

nedx � LRnnne,av, �A2�

where ne,av is the mean value of the electron density over the
system. The electron flux for Maxwellian distribution at a
plasma-sheath boundary is approximately

�e =� kTe

2�me
exp� e�b

kTe
�n0. �A3�

The most “standard” assumption in collisionless discharge
models that the ion and electron fluxes at the boundary are
equal ��i=�e�, so there is no electric current. In the present
case, this “floating wall” condition yields �b��w where w
denotes the physical wall. Current balance so becomes

LRnn =
n0

ne,av
� kTe

2�me
exp� e�w

kTe
� , �A4�

so the ion density becomes

ni = ne� mi

2�kTn

n0

ne,av
� kTe

2�me
exp��w�

�
 exp�1 +
e��� − ��

2kTn
�K0� e��� − ��

2kTn
�dx�.

�A5�

After inserting the expression ne=n0 exp�e� /kTe� B&J ob-
tained their famous equation, which in an un-normalized
form reads,

1

B
=
 exp�1 +

e��� − ��
2kTn

�K0� e��� − ��
2kTn

�dx�,

�A6�

where, for brevity’s sake, B&J introduced symbol B for a
short expression of the eigenvalue of the problem as

B =
1

2�
� Temi

Tnme

n0

nav
exp� e�w

kTe
� , �A7�

with �w the physical wall boundary. Interchanging the de-
pendent and independent variables yields

1

B
=
 �����exp��1 +

1

2Tn
��� − ����

� K0�� − ��

2Tn
�d��, �A8�

which is a Fredholm-type homogeneous equation of the first
kind where ������−1 /E is the inverse electric field E. So
the electric field is the unknown function to be found with a
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known analytic kernel �the rest of integrand which we will
refer to as the B&J kernel�.

Once a numerical solution of the system �A8� is ob-
tained, it is straightforward �but not easy� to calculate the ion
velocity distribution which in normalized variables in accor-
dance to B&J reads

f i���x�,v� = B

��

�����exp����

�
exp�− �v2 − ��� − ���/Ti�

�v2 − ��� − ��
d��. �A9�

APPENDIX B: THE TRAJECTORY METHOD

The velocity distribution at any observation point of the
discharge for a general ion source up to the wall can be
obtained by performing an analysis of the phase space tra-
jectories crossing the observation point from either its
right or its left side, based on the energy conservation
v2+�=v�2+��=Const. Let us now look at Fig. 12�a�, where
the place of the observation is an arbitrary point, the ion birth
places are denoted with prime � ��, so an integration of all the
birth places should be carried one,

f i�x,v� = 

�start

��x� d��

− E����
S�x�,v��

v�
. �B1�

�1� First, we look at the trajectories of particles which pass
point x��� from its right to its left side, i.e., the trajec-
tories of the type between t1 and t2 �including separatrix
tsx− and excluding all the particles of type t3 and other
trajectories with insufficient energy to pass from the
right to the left side of the observation point�. The con-
tribution of these particles to the ion velocity distribu-
tion is thus

f i�x,v� = H�− v�

�w

��x� d��

− E����
S�x�,v��

v�
, �B2�

where H�x� is the Heaviside step function.
�2� Second, we look at the particles passing point x��� from

its left to its right, whose place of birth is at the right
side of the plane of symmetry between separatrices tsx−

and tsx+:

f i�x,v� = �H�v�H��− � − v��

� �

�w

��x�+v2 d��

− E����
S�x�,v��

v�

− 

��x�+v2

��x� d��

− E����
S�x�,v��

v� � . �B3�

Here the first integral belongs to those ions which are
born at either side of point x��� and have a turning point
PT, i.e., born with negative velocities �the bottom part of
the trajectory of type t2�, while the second integral be-
longs to the ions born with positive velocities �the upper
part of the trajectory of type t2�.

�3� Finally, we look at the particles passing point x��� from
its left to its right side, whose place of birth is above
separatrix tsx+ �type t4�

f i�x,v� = �H�v − �− ����

�w

0 d��

− E����
S�x�,v��

v�

− 

0

��x� d��

− E����
S�x�,v��

v� � , �B4�

where the first integral belongs to those ions which are
born at the left hand side of the plane of symmetry �with
enough energy to overcome the potential maximum� and
the second integral considers those particles which are
born with positive velocities in the region between the
plane of symmetry and observation point x��� �no turn-
ing point�.

Thus we obtain the velocity distribution as a composi-
tion of three parts, i.e., for negative velocities, for velocities
between 0 and �−�, and for those greater than �−�. The
illustration of the method is shown in Fig. 12�b�. With ex-
plicit source distribution, which is in this work assumed to be
Maxwellian, the nondimensional form of ion VDF is

FIG. 12. A randomly chosen potential profile calculated in our PIC simula-
tions �a� with corresponding particle trajectory diagram �b�.
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f i���x�,v�

= B

0

1

dx� exp����
exp�− �v2 − ��� − ���/Tn�

�v2 − ��� − ��
. �B5�

The normalized velocity distributions at various points x���
for the cases of an analytically solved problem of the zero
ion source temperature, a very small ion source temperature,
and a rather high source temperature Ti,src=Te were shown in
Sec. III. The moments of velocity distribution are fluid quan-
tities, which are obtained as an infinite series of integrals
	−�

� v j f i�v�dv, where j=0,1 ,2 , . . .. Such quantities are, e.g.,
the ion density

ni���x�� = 

−�

�

f i�v�dv , �B6�

the ion flux

�i���x�� = 

−�

�

vf i�v�dv , �B7�

the ion total energy

�Ki���x��� =
1

ni���
−�

�

v2f i�v�dv , �B8�

and derived quantities like ion directional velocity

ui���x�� =
1

ni���
�i��� , �B9�

the ion temperature

Ti���x�� = Ki��� − ui
2��� , �B10�

as well as all higher moments like heat flux, energy flux, etc.
at any location.

APPENDIX C: NUMERICAL METHOD

We can first look for a solution of Eq. �25� without the
unknown additive constant �0. Once this solution is found,
the additive constant is simply calculated from the vertical
shift of the solution. Quantity B �related to the source
strength� in our algorithm is calculated and iterated at each
loop.

We start from Eq. �20� that is discretized over interval
x= �0,1� with a varying density of sample points xi. For a
subsequent purpose of derived quantities like dx /d� a dense
grid near zero is needed. The location of the ith position at
the grid is given by

xi = �1 − �1 −
i

N − 1
��2��1

, �C1�

for the index range i=0,1 , . . . ,N−1, which covers x range of
interest for N points. The grid density near zero is controlled
via �1, while �2 controls the density near x=1. Practical
values for �1 and �2 range from 2 to 3 for grids with
N�1000 points. It should be noted that the grid density ap-
proaching x=1 is extremely high and that an equivalent in-
terval density can be as high as 108 points.

For function ��x� discretized at points xi and break into
N−1 intervals piecewise-linear profiles are assumed. The in-
terpolating function V�x�� over each interval can be evalu-
ated with

V�x�� = Vi +
Vi+1 − Vi

xi+1 − xi
�x� − xi�, xi � x� � xi+1, �C2�

where Vi represents discrete function value Vi=��xi�. In a
discrete form Eq. �25� is rewritten into

exp��1 +
1

2Ti
�Vk�

= B�
i=0

N−1 �

xi

xi+1

dx� � exp��1 +
1

2Tn
�V�x���

�K0� 1

2Ti
�Vk − V�x����� . �C3�

The right-hand side of Eq. �C3� can be abbreviated and for-
mulated in the iterative form as

Vk =
1

1 +
1

2Tn

ln�B�
i=0

N−1

Li� , �C4�

where Li represents the integral over each interval that
should be evaluated for every index i at position k. A careful
investigation of plasma Eq. �C3� that has the property of
monotonicity reveals that for each position k there are at the
most two neighboring intervals that lead to singularity of the
Bessel function. These singular intervals with integrable sin-
gularity at the boundary can be numerically solved with
adaptive quadrature integration algorithms.17,18 The remain-
ing intervals should not impose any numerical difficulties
and can be solved with a nonsingular quadrature formula
over each interval. Note that this is not completely true
and that observing Eq. �C2� one can see that on condition
Vi+1−Vi�0 additional singularity might arise, if monotonic-
ity is not strictly maintained over the whole interval �0,1�.
Especially intervals near zero are prone for such singulari-
ties. Another observation of a numerical nature that might
arise in Eq. �C2� can be observed with high gradients ap-
proaching x=1 and dense intervals that can lead to unstable
discrete derivate ci= �Vi+1−Vi� / �xi+1−xi� found in Eq. �C2�.

These observations should be carefully considered when
integrating Eq. �C3� fully numerically at every k. One can
also conclude that the chosen �1 and �2 as grid parameters
have indirect influence on the presence of numerical insta-
bilities and the presence of singularities that should be
avoided as much as possible.

The formula �C4� where the right-hand side of equation
evaluates to new Vk is mathematically exact, but can only be
applied when all Vk are perfectly accurate. With Vk→Vl on
the left-hand side of Eq. �C4� and additional soft-step param-
eter � one can get an iterative algorithm for new Vk values
with

Vk
new = Vk + ��Vl − Vk� . �C5�
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While the method �C5� converges, it does so very
slowly. The practical values for � are from 0.0001 to 0.1 and
are dependent on the initial solution and grid parameters.
Large �’s are prone to oscillatory behavior that starts at
points near x=0.

To speed up the computation, one can first compute an
approximation on a coarser grid and gradually lower � when
interpolating to the dense grid. An alternative approach when
changing Ti is to start with an already converged solution for
nearby Ti. The initial solution is recommended, although not
required, to be as close as possible to the final solution. We
suggest the following monotonous initialization function

Vk = 0.5�1 − exp�k/N��, k = 0,1, . . . ,N − 1, �C6�

disregarding �1 and �2.
To stabilize the convergence we introduced two addi-

tional vanishing a posteriori regularization operations on Eq.
�C5� that are based on the known solution smoothness. A
simple Laplacian-like smoothing technique with smooth-step
parameter � similar to Eq. �C5� is employed as

Vk
new = Vk + ��Vk−1 + Vk+1

2
− Vk� ,

�C7�
k = N − 1,N − 2, . . . ,1.

Choosing ��1 stabilizes the convergence and should be
gradually lowered to zero when the solution stabilizes. After
observing the nature of instabilities, we found out that oscil-
latory behavior starting at x=0 propagates throughout the
mesh. To prevent this, we enforced a parabolic interpolation
for the first m points that are rewritten with

Vk = axk
2 + bxk + c, k = 0,1, . . . ,m ,

�C8�

a =
Vl − Vm

xl
2 − xm

2 , b = 0, c =
xl

2Vm − xm
2 Vl

xl
2 − xm

2 ,

where mesh point xl is chosen at l=3 /4m. The length of the
rewritten profile can be up to xm�0.1 and gradually lowered
when approaching the final solution. Constant B is unknown
during the iterative procedure and as shown in Eq. �25� in-
fluences the shift of the solution. From Eq. �C3� B can be
expressed as

B =

exp��1 +
1

2Tn
�Vk�

�i=0

N−1
Li

, �C9�

with Vk being the old value, while Li’s are next iteration zone
integrals. Constant B should hold at every grid point. As an
eigenvalue, B does not have a major impact on convergence.
Similarly to other smooth step parameters, B should also be
adjusted with soft step of 0.005, calculated from the central
grid point. Our experiments showed that initial B=0.3 can be
used for all cases.

The iterative process can be summarized through the fol-
lowing steps.

�1� Setup B and grid positions using Eq. �C1�.

�2� Create the initial solution with Eq. �C6� or initialize the
function profile with the nearest previous solution, if
existent.

�3� For every grid position calculate the sum of integrals Vk

using Eq. �C4�.
�4� Move function values Vk into a new position with a soft-

step strategy �C5� using step size � in the range �0.0001,
0.1�.

�5� Stabilize the convergence with additional smoothing of
the curve with Eq. �C7� that prevents the oscillatory be-
havior of the solution. Similarly to Eq. �C5�, the step
size should vanish as the solution approaches the stable
form.

�6� Prevent oscillations near x=0 with a parabolic rewrite of
the potential profile for all points with xm�0.1. Use Eq.
�C8� for the coefficients of the parabolic interpolation.

�7� Calculate B using Eq. �C9� and correct its value for
0.005 of the difference between new and old B.

�8� Repeat the iteration from step 3 following the solution
quality criterions while gradually lowering the smooth
step and the parabolic interpolation range.

The stopping criteria for the iteration procedure cannot
be simply expressed with a measure like the quadrature norm
between the iterations. One of the most important conver-
gence indicators is a potential at x=1. During the conver-
gence one should observe the curve properties near x=0,
where the parabolic interpolation ends. Potential VN−1 at
x=1 can also behave oscillatorily, with a convergent ampli-
tude. The number of iteration steps depends on a number of
factors and can range from 2000 to 100 000. The most influ-
ential is the soft-step size that should be as high as possible.
Setting the soft step too high produces undesirable oscilla-
tions at the beginning of the potential curve that cannot be
easily rescued once they appear. The strategy for lowering
smooth-step � and the parabolic interpolation is that, first,
one should have a convergent solution and then smoothly
lowering both parameters that should vanish for the final
solution. Figure 13 shows the described scenario with both
parameters lowered, while monitoring the convergence, i.e.,
without the oscillatory nature through all computational area.
The implementation of the described approach was verified
and coded in MATHEMATICA and the C language using the

FIG. 13. Convergence for Tn=1 with gradually lowering smooth step and
parabolic rewrite took about 500 000 iterations and nearly 1 week of 8 core
Intel Xeon 2 GHz processor time.
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Gnu Scientific Library �GSL� for special functions and inte-
grations. Most notable here is the Bessel K0 function with a
relative error under ��10−10 in a wide range as shown in
Fig. 14. The upper limit for double machine precision K0

obtained with this experiment is approximately 600, which is
an imposed limit of our code in C on commodity computer
architectures. For the numerical integration in zones we used
QAG and QAGS quadrature algorithms that adaptively bi-
sects integration into subintervals until the given relative er-
ror limit is achieved. The integration of nonsingular zones
applies the Gauss–Kronrod 21-point integration rule while
for singular zones results are extrapolated using the epsilon
algorithm. For more details consult Ref. 19.

While MATHEMATICA was our first choice to prove some
convergence experiments, it was soon clear that the problem
would be time consuming and that C code would require
parallelization for reasonable proof of concept. The number
of integral evaluations is directly connected to the number of
grid points N. We estimate a practical limit for MATH-

EMATICA up to 200 points. Our C code with the shared
memory model parallelization using OpenMP does not seems
to be practically time bound with a number of intervals, but
rather with precision limits that are imposed a with numeric
model and machine precision. For the numeric model we
used long double precision wherever possible. The practical
number of points that enabled us to derive results was 1600.

The required extremely high refinements at both sides of

the domain are also sources of instabilities that need a special
treatment with regard to precision. One must take care that
the overall precision of the zone integration results within the
high grid density is not violated. The relative error for QAG
and QAGS algorithms was set to 10−6 with a maximum num-
ber 20 000 of workspace for adaptive subintervals.

In our code, we implemented result caching mechanism
that enabled us to experiment with parameters, so we could
rollback in the presence of instabilities. Once one case is
evaluated it is relatively easy to move to the nearby tempera-
ture. Depending on solution criteria, computational time on 8
core dual Xeon 2 GHz processor can range from 1h to 1
week. A helpful time-saving approach can be regrid from/to
low/high grid density.
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