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The ionization length is an important quantity which up to now has been precisely determined only
in plasmas which assume that the ions are born at rest, i.e., in discharges known as “cold ion-source”
plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with
an arbitrary ion source temperature. Harrison and Thompson (H&T) [Proc. Phys. Soc. 74, 145
(1959)] found the values of this quantity for the cases of several ion strength potential profiles in the
well-known Tonks—Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by
“cold” ion temperature. This scenario is also known as the “singular” ion-source discharge. The
H&T analytic result covers cases of ion sources proportional to exp(BP) with ® the normalized
plasma potential and 8=0,1,2 values, which correspond to particular physical scenarios. Many
years following H&T’s work, Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] developed
a model with the so-called “warm” ion-source temperature, i.e., “regular” ion source, under B&J’s
particular assumption that the ionization strength is proportional to the local electron density.
However, it appears that B&J were not interested in determining the ionization length at all. The
importance of this quantity to theoretical modeling was recognized by Riemann, who recently
answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with
cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm
ion-source case solution, which is highly resistant to solution via any available analytic method. The
present article is an extension of H&T’s results obtained for a single point only with ion source
temperature 7,=0 to arbitrary finite ion source temperatures. The approach applied in this work is
based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)]. © 2009
American Institute of Physics. [doi:10.1063/1.3271412]

I. INTRODUCTION

The ionization frequency v; and likewise the ionization
length (L,) are an important quantity in plasma physics. In
investigations into the plasma and sheath problem the impor-
tance of this issue is convenient to illustrate on the problem
of how to patch quasineutral plasma and collisionless sheath
via intermediate scale theory [see, e.g., Riemann 2009 (Ref.
1) and references therein]. Namely, the ionization frequency/
length is the basic quantity toward finding the solution of any
particular Tonks—Langmuir2 model (described below in de-
tail). In the theory of intermediate plasma scale used in, e.g.,
Kaganovich’s work,> which has been oriented to practical
applications, he found an explicit numerical-experimental re-
sult expressed in a formula for the electric field where ion-
ization frequency is a quantity to be calculated as an
eigenvalue. Note that the ionization frequency in his work
was denoted by “Z,” while we prefer to use the “classic
notation” v;.

The Tonks—Lz:mg:{muir2 problem of collisionless dis-
charges is old and fairly fundamental in the area of basic
plasma physics and application in space laboratory and fu-
sion plasmas. Our mathematical formulation of the problem
can be expressed in the form of a general integrodifferential
equation
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where the unknown function to be found is W(®), while
other functions, e.g., singular kernel K, and local function
n(®) are prescribed in advance, and arbitrary parameters of
the problem are S, €, and 7, while the eigenvalue of problem
is N. The eigenvalue is dependent on the ionization fre-
quency. It depends on the physical model, i.e., particular
boundary conditions.

From the physical point of view, Eq. (1) is just the first
step to solving a complete elementary problem of the
coupled Poisson and Boltzmann equations. While the deriva-
tion details of the coupled problem resulting from Eq. (1)
will be elaborated below, it should be pointed out here that
such an equation emerges from an elementary physical sce-
nario with numerous approximations and compromises but,
nevertheless, still remains mathematically so stiff that up to
today it has never been solved without considerable addi-
tional simplifications.

T&L found that the complete problem can be split into
“plasma approximation,” where strict quasineutrality is as-
sumed and “sheath approximation” where the electric field
dominates. The corresponding two regions of the plasma-
wall transition layer are often referred to as “the presheath”
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and “the Debye sheath” regions. T&L found approximate
solutions for these two regions in plane, cylindrical and
spherical geometries. Their “intuitive” approach of splitting
the plasma-sheath equation into two parts was later rendered
into a precise mathematical context recognized by Caruso
and Cavaliere,” who employed for this purpose the boundary
layer theory by van Dyke. Their approach in application to
plasma physics is now known as the “two-scale” plasma and
sheath approximation. Following the two-scale approach
Harrison and Thompson (H&T) (Ref. 5) upgraded T&L ap-
proximate solution to an exact analytic one; however, hold-
ing for the cold ion source distribution under the assumption
of strict quasineutrality. Soon after the H&T publication
Self® announced a complete numerical solution, i.e., with the
quasineutrality assumption removed, but still with a singular
(cold) ion source. Emmert ef al.” tackled the plasma solution
(e=0) with a regular (warm) (7,#0) but artificial ion
source, prepared in advance to yield a Maxwellian ion dis-
tribution function. Bissell and Johnson (B&J),8 however, de-
cided to start from a more realistic, i.e., Maxwellian ion
source, and found a numerical solution within a limited
range of ion source temperatures. Their model was con-
strained by their choice of the kernel approximation and
polynomial approximation of the model. Soon after B&J
work Scheuer and Emmert (S&E) (Ref. 9) used a better ker-
nel approximation enabling them to find a solution also hold-
ing within the range of low ion source temperatures, but,
unfortunately, not for relatively “warm” ion sources, which is
of high importance to fusion application. After S&E’s work,
when the numerical method capabilities, libraries and com-
puting resources considerably increased Kos et al.'® have
recently managed to employ the exact kernel instead of an
approximate one. Kos et al. solved the plasma problem with
a regular (finite ion-source temperature) Maxwellian ion-
source without any restriction regarding the ion temperature;
however, for e=0 and for a commonly adopted assumption
of the ionization source profile proportional to the local elec-
tron density. The case with various ion sources has so far
been solved only for singular ion sources. H&T (Ref. 5)
defined the problem for a rather general ion source strength
profile S;~n, and solved analytically basic cases 8=0,1,2
with n, ~exp(BP), (with ® the normalized local plasma po-
tential) where case 8=0 corresponds to the “flat™ ion source
spatial distribution (e.g., caused by an electron beam or an
external laser-caused ionization), B=1 corresponds to the
single-stage electron-neutral impact ionization and =2 as-
sumes two-stage ionization mechanism. The particular nu-
merical value of B (please note that in original H&T work
they use another notation for B) can also be an arbitrary
positive or negative number providing it can be constructed
from a possible physical scenario, which involves volume
ion gains and losses. Alternatively, particle-in-cell (PIC)
simulations'' can be employed with no knowledge of 8 be-
ing required. From the theoretical point of view, scenarios
with particular 8 values with combined ionization mecha-
nisms are of considerable importance but can hardly be con-
structed for a general case, i.e., it is complex enough even for
simplified discharges, i.e., even for relatively “clean” physi-
cal scenarios 8=0,1,2.
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Recently Sternovski et al."* have tackled the plasma-
sheath problem numerically taking into account two source
terms of ions, i.e., a homogeneous ionization source and the
charge exchange source, both under the assumption of cold
initial velocities of new born ions. Limiting cases of either
charge exchange (collision dominated) and direct external
ionization (collision free) were well established and theoreti-
cally solved by Riemann."” Kuhn et al.'* and Jeli¢ et al.
also solved these limiting problems numerically and using
PIC simulations, for the case of strict quasineutrality and for
the special purpose of determining the so-called “ion poly-
tropic coefficient,” however. This is a quantity of particular
importance to determine the local ion sound velocity. Re-
cently, Robertson'® made attempts to find a solution of the
sheath and presheath in plasmas with warm ion Maxwellian
sources for several particular ion source temperatures. His
investigation presents a further effort to deal with singularity
problems which B&J and S&E have faced. As a particular
result he confirmed the results obtained by B&J and S&E
regarding the great difference between the initial ion source
temperature and the final temperature. Meanwhile Kos
et al." performed a more detailed research with in an ex-
tremely wide range of ion source temperatures, for the £=0
case with detailed profiles of relevant quantities.

A particular problem of special interest which has never
been solved for the finite ion temperature is calculation of
the ionization length. While for the case of exponential (pro-
portional to electron density) ion strength H&T obtained
their famous single value ~0.405 (i.e., for 7,,=0) Kos et al.
recently calculated the whole curve valid for arbitrary ion
source temperature 7,, i.e., they solved the problem with
B=1. Analogous solutions with other 3 values still remain
unknown. The main reason is that this is an extremely ex-
pensive task. Nevertheless, we made efforts to solve the
ionization length problem for another very important case
B=0 (the flat potential profile), for which H&T found the
exact value 0.344 for 7,,=0. Our attention to 8=0 was drawn
because of its high importance to various kind of
discharg.ges.lz’m’17

As the main result of the present work we calculate the
ionization length L; for both cases =0 and S=1. So unlike
the vanishing ion-source temperature limit the present work
finally shows complete dependence of L; on the arbitrary ion
source temperature relevant for a variety of space, laboratory
and fusion plasmas. Results are confirmed by means of the
PIC simulation method (for further reading on PIC see, e.g.,
recent work by Tskhakaya et al."! from 2008 and references
therein). Unlike all above-cited numerical works we use an
extremely high spatial resolution at the plasma boundaries.

In Sec. I we present theoretical considerations leading
to a complete plasma and sheath equation with ionization
source strength proportional to exp(BP). In Sec. 1T we
present the numerical procedure. The results are presented in
Sec. IV, while Sec. V is a brief summary with discussion and
conclusion.
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FIG. 1. (Color online) The geometry and coordinate system.

Il. THEORETICAL BACKGROUNDS

The general formulation of the problem of the plane-
parallel symmetric discharge, as shown in the schematic dia-
gram of problem geometry Fig. 1, consists of simultaneously
solving Boltzmann’s kinetic equation for ion velocity distri-
bution function (VDF) fi(x,v),

af; e dIf;
v dx m;dx dv =Sixv), @

and Poisson’s equation

&P e
——=—(n;-n,). 3
=) )

The source term S;(x,v) on the right-hand side of Eq. (2)
describes microscopic processes assumed for a particular
scenario of interest, x being the Cartesian space coordinate, v
the particle velocity, e the positive elementary charge, m; the
ion mass, ®(x) the electrostatic potential at position x, g, the
vacuum dielectric constant, and n; , are the ion and electron
densities, respectively. The main subject of the present inves-
tigation is the source term S;(x,v). It can be defined in a
fairly general form

2
Si(U,.x) :Rnnne(x)fn(L>H<M>’ (4)
vr, 2

where R is the ionization rate, n, is the density of neutrals
with certain VDF (which is in our case uniform over the
system) f,(v/vr ) and the electrons follow Boltzmann distri-
bution n,(x)=n, exp(Be®(x)/kT,) with ng the electron den-
sity at x=0; vr, = VKT, /m,, (it is assumed that for the present
investigation the neutral atom mass m, is equal to the ion
mass m; and T,,=T; . is the ion source or, alternatively, the
neutral gas temperature), H(z) denotes the Heaviside step
function that is introduced to satisfy the positiveness of the
kinetic energy of the born ion.

The requirement that the ion current must be equal to the
electron current at the wall leads to writing I';=T", and

Be®,,
kT, > ©)

1
LRn,n, ,, = Evnno exp(

where n, ,, represents the average value of the electron den-
. [P——

sity over the system, vy =\kT,/m,, and m,, T, are the elec-

tron mass and electron temperature, respectively, while ®,, is

the wall potential as indicated in Fig. 1. The plates in Fig. 1

at x = L are assumed to be perfectly absorbing and electri-
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cally floating. Although the plates are grounded in an experi-
ment, it is convenient to take the potential of the discharge
center as referential, i.e., the electrostatic potential ®(x) is
assumed to be monotonically decreasing (for x>0) and is
defined to be zero at x=0. With the help of an auxiliary
function

Fn<L)=\/ZT-vT ,1(L>, (6)
UTn an

r—— .
where anzvan/ m,, (and it is assumed that for the present
investigation the neutral atom mass m, is equal to the ion
mass m;), the source term in Eq. (4) acquires the form

2
S.(x,) = %Bne(xm(i)br(%), (7)

v Tl‘l

1 T, m; ng (,Beq)w)' ®)

= ——exp

20 NT,m,n,,, kT,
Quantity B (originally introduced by B&J) is related to the
ionization frequency wv;, and the characteristic ionization
length L; is

2

T,
V; =BTUT",

27T,

L
and L;= SH_Z 9)
V; B

The general solution of Eq. (2) with the source term equation
(7) is

+ -+ 2 B
fi (x,v) =f,-<v’2+ —eCD(X’)) * —ny
mi L

X dx’' D(x’ ‘3’_/2
XJ ,x—exp<'Be b )>Fn 20 H@'),
Vo'? kT, ur,

(10)

where
v'2=v2—%{<b(x’)—(1)(x)}. (11)

We remind that the parameter 8 characterizes the rate of ion
generation per unit volume: when B=0 the rate is uniform;
when B=1 the rate is proportional to the electron density.
The values of B greater than unity correspond to those cases
where ion generation due to ionization is multiple stage pro-
cess dependent upon the electron density. In Eq. (10) f;°
denotes the VDF of the ions moving in the positive (+) and
negative (—) directions of the x-axis (x>0), respectively.
The point (x",v’) in the phase-space (see Fig. 1) is the point
of the ion birth. The ion velocity at the observation point we
can find from the energy conservation law Eq. (11). Further
we consider the symmetric distribution of neutrals, when

F,,<+ i) =Fn(— L). (12)
UTn an

Functions ]_”f(x,v) are arbitrary functions corresponding
to the homogeneous part of Eq. (2) to be constrained
by conditions as follows: (a) at the center of the system,
x=0, the VDF must be symmetric in the velocity space
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[f7(0,v)=f;(0,v)] and (b) due to perfect absorption there are
no ions at the wall surface, x=L, moving with the negative
velocity (f;(L,v)=0). After straightforward calculations we
obtain the following solution of the Boltzmann kinetic equa-
tion for the arbitrary distribution function of neutrals:

X L “J’_/Z
ﬁ(x,v):B@ f dx’ +f dx' |F, ML
L1Jo 0 vr,

1 Bed(x') ,
X\”Fexp< i, )H(v ), (13)

(where brackets {[} denote integral operator) and

L 2
n v
fi () =B—0f dx’Fn<— \—)
L X

v T,

1 Bed(x") ,
X \’Fexp< i, )H( v'). (14)
In Egs. (13) and (14) the velocity v’ is defined by expression
Eq. (11). Here it is necessary to mention that the similar
solutions are found by Riemann'® using different from (a)
boundary condition [see the boundary condition (a) used by
us above].

For the Maxwellian source the auxiliary function Eq. (6)
takes the form

F -2 v’ (15)
| — | =expl - —|.
vr, P 20%’

The ion density and the ion flux are moments of velocity
distribution which in nondimensional variables read

v ed(x X
U TE
V2¢4 e L
(16)
r.
% - ni,e’ = - I“i,e’
o noCs
with auxiliary nondimensional variables
T, 1 kT,
T=—" =, = ¢, (17)
Tn Tn m;

and with a nondimensional quantity of central interest, as
appeared in a natural manner above

L.

1

1
il S S
L B\2wT,T, L 18)
At this place we have to remind that the normalization is a
matter of taste up to multiplicative constant, as somehow
pointed out by Sternovsky et al."* in their list of references.
In this we have to keep in mind that the definition Eq. (18) is
adjusted to “taste” of H&T, but can be converted in a trivial
manner to, e.g., according to works of Riemann (see, e.g.,
Refs. 1 and 19) via multiplying by a factor of VE.

The density and in flux for the Maxwellian source now
take the form
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oo 1
n(x) =23f va dx' exp[ BP(x")]
0 0

o exp{— v’ - D) + P(x)]}
V2= ®(x') + D(x)

XH[v? = ®(x") + D(x)], (19)

e I
I'(x) = Z\EBJ vdvf dx" exp[ BP(x")]
0 0

» exp{— fv? - D(') + P(x)]}
Vol = d(x') + P(x)

XH[v? - D (x") + D(x)]. (20)

The integral over x’ in Eq. (19) can be split into two parts

1 X 1
J dx’(~~)=fdx’(~-')+J dx'(++). (21)
0 0 X

In the first interval (0,x) of the integration we see that
®O(x")-D(x) =0 holds, and in the second P (x')—-D(x)=<0.
This allows us to use the cutoff property of the H-function
and finally we find

1
n(x) =Bf dx' exp[ BD(x")]

0

)

(22)

Xexp{g{d)(x’) - @(x)}]K0(§|(I)(x’) - d(x)

with

1
I'(1)=+/ 2—7TBJ dx" exp[D(x)]. (23)
7T Jo

In obtaining Eq. (22), the relation

o0 2 2
expl—
> f Mp(_),((_) 24)
0 VX2 +ad? 2 2

with K,(z) the modified Bessel function of zeroth order was
employed. Equation (22) coincides with the expression for
the ion density used in Refs. 8 and 9. In the limit of the cold
source T,,— 0, where the auxiliary function reads F,,(v/an)
= /Ervrnb‘(v) [8(z) is the Dirac &-function], we find the ex-
pression for the ion density

lfxd_x’ exp[®(x)]

n(x)=—+= —_—,
V2Jo Li NO(x') - D(x)

(25)
discussed previously in detail in Refs. 20 and 21. In Eq. (25)
L, is defined by Eq. (9). In the dimensionless form Poisson’s
Eq. (3) finally acquires the form
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B 1

1
B LD
1- _ (D 27 =
exp(- ®)e 12

1
dx’ Tow) -1+ )
XL X exp{<ﬂ+2> (x") <+2> (x)]

) , (26)

xKO(Eﬁcb(x') ~ D)

where e=Ap/L with the electron Debye length A\jp
=1\gokT,/(e’ny). In fact & represents the measure of the
quasineutrality degree.

In Eq. (26) we have replaced the original H&T notation
of the ionization profile exp(ye®/kT,) with exp(Be®/kT,),
as the coauthors of the present work use the y symbol as
exclusive notation for the “polytropic” coefficient (see, e.g.,
Refs. 14 and 15). Using Egs. (5) and (23) to find the floating
potential of the wall we use the relation

1
exp(qbw):Zﬂ'\/%\/ZB f d' exp[®(x)]. (27)
m; Te 0

After introducing quantity W =dx/d®d, it is now a straight-
forward task to derive mathematical expression given by Eq.
(1) as applied to a particular class of kernel. Equation (26)
describes the potential profile for the arbitrary temperature of
the ion sources. The form (1) is mathematically elegant be-
cause all unknown and known functions are explicit. Al-
though this is a complex and unclassified type of integral
equation,22 in the limit of =0 it is reduced to a familiar
Fredholm type of equation. This appeared to be a natural
way followed by B&J to solve the problem starting from the
Fredholm type form. However, they applied an intricate
method with an approximate kernel which constrained the
solution to a rather narrow range of validity. S&E (Ref. 9),
however, applied another form without introducing auxiliary
function ¥ (which is in fact the inverse electric field with a
negative sign). In the S&E form all the functions are im-
plicit, so this form cannot be regarded as the Fredholm type
at all but rather as a Hammersteinian equation. Since S&E
used a better kernel approximation and used the straightfor-
ward method of numerical solution, they obtained results
which are valid within a wider range of ion-source tempera-
tures, however, still limited for relatively low values. The
problem was finally solved by Kos et al. via employing the
exact kernel; however, still only for the particular ionization
strength profile proportional to the electron density.

The generalized equation derived which includes a vari-
ety of source strength profiles being the exponential function
of the potential profile powered by B Eq. (26) is a complex
one which is not classified in the mathematical sense at all. A
would-be solution of such an equation should yield a full
plasma and sheath solution, i.e., the potential profile between
the electrodes for a variety of physical scenarios. However,
such an equation has never been solved satisfactory without
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FIG. 2. (Color online) Our preliminary solution with both finite epsilon and
finite ion-source temperature plasma-sheath equation of the type equation
(26) for B=1.

either the e=0 assumption or the 1/ 7=T, =0 approximation.
We are intensely working on the solution of Eq. (1) for arbi-
trary ion source. However, this is not a trivial task. In this
manuscript we illustrate our preliminary results of finite ep-
silon finite ion-source temperature plasma-sheath equation of
the type equation (26) for B=1 (Fig. 2). Unfortunately it
turns out that the problem plasma-sheath problem is numeri-
cally much more demanding that the two scale approxima-
tion. We will solve this problem with a high resolution dur-
ing our forthcoming investigations.

The most usual practice which is well exhausted by nu-
merous plasma physicists is to consider the approximation
with both T,,=0 and £=0. Moreover, the usual praxis is fur-
ther to ignore any other B8 which is different from one. How-
ever, during several couple of decades has been recognized
that the plasma and sheath can be patched via so-called in-
termediate scale analysis (see, e.g., Riemann’s”’ work and
references therein). For such an approach it is of crucial im-
portance to know the exact values of the plasma potential at
the plasma the plasma-sheath boundary as emerges from the
two-scale model, as well as the ionization lengths which dif-
fer from the physical lengths, as shown above. For finite
ion-source temperatures such values became available with
recent work of Kos et al.,lo however, for S=1. Since we are
aware of particular scientific and practical importance of
other scenarios characterized by S values, we performed at
the extent possible numerical calculations for the second
prominent case, i.e., 8=0, which correspond to the flat ion-
ization source strength profile over the discharge. Here we
consider the £=0 approximation, but unlike previous works
we deal with finite 7; of arbitrary value. Thus instead of
obtaining a single value for 7;=0 such as in H&T,” we obtain
the whole curve as further described. In addition the results
with B8=1 were again calculated via using upgraded program
package which guaranties high reliability of results obtained
for either value of 8.
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FIG. 3. Last 28 points of the potential profile for 7,=0.1, S=1 with
N=2401 points and grid density \;=1 and \,=2.4.

lll. NUMERICAL METHOD

We solve Eq. (26) numerically in the limit e=0 when
this equation reduces to the Fredholm type integrodifferential
equation with a singular kernel and nonlinear function re-
lated to Poisson equation (3). Solution function ®(x) is
known to be smooth and monotonous, having the end point
singularity when £=0. Additionally, Eq. (26) contains un-
known constant B, which represents the “eigenvalue” of the
system. As has been elaborated by Kos et al."® the singular
behavior at the boundaries of interval [0,1] can be taken into
account by using nonuniform grids with increasing density
when approaching the singularity.

We introduce the following node positions for N points
of the system

x=[1-[1-i/(N-D]], i=0,1,....N-1, (28)

where \; and N\, control the density at each boundary. For
illustrating our high resolution method with in Fig. 3 we
show a zoom of the potential profile at the end of the system
obtained with 2401 grid nodes case. Calculating even such a
single profile is a very expensive a computational task.
Rearranging Eq. (26) into a form suitable for an iterative
procedure and discretizing it into subintervals we obtain

AT

Nl Xivl 1
=B§ Li dx’ exp[<ﬁ+ Z—TH>V(x’)}

1
XKO<5|V(X’)—V/{|) (29)

Each node value V/ is also a source for a diagonal singularity
in the kernel K(z) (a singularity as x" — x;). In practice, the
computation on strongly graded grids may be unstable since
the grid points may be located too close to each other near
the boundaries, and the system of equations may become
rapidly ill-conditioned with increasing A\, \,, and N. Integra-
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FIG. 4. (Color online) Convergence plots for 7,=4 and flat source: (a)
Boundary point ®; and (b) eigenvalue B.

tion of Eq. (29) in the subintervals is performed directly with
adaptive quadrature algorithmsm’24 that we extended to 128-
bit quad precision floating point values for increased preci-
sion and stability on highly graded grids.

We refer to Ref. 10 for details. In this work we extend
the applicability domain of this technique to e=0 and 5=0.
To overcome stability problems we introduced piecewise
Lagrangian polynomial interpolation25 of order two and three
in subintervals with small ® gradients. Although such ap-
proximation is often considered to be too expensive for nu-
merical computation, it possesses beautiful symmetry and
with a modified (weighted) form is comparable in speed to
other approximations. Additionally, we found that the solu-
tion for B=0 (flat ion-source profile) is surprisingly stiffer
than for B=1. This could be due to the imbalance in exp(z)
functions on both sides of Eq. (29). The shifting of the whole
solution for —V,, was required to speed up convergence, as
shown in Fig. 4, where we illustrate the diagnostic the new
results obtained in the present investigation with =0 proce-
dure of obtaining “saturated” solution. The staircase effect in
Fig. 4(b) is just an illustration of a local convergence when
shifting to the origin is not performed within dense intervals.
Such behavior was not observed for 8=1. Figure 4(a) shows
that end point value @, converges faster than B. An addi-
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FIG. 5. (Color online) Comparison of potential profiles for (a) Boltzman-
nian ion source distribution and (b) constant ion source distribution.

tional advantage of our program package is the feature of
automatic checking of the convergence criterion for both @,
and B. The results are presented in Sec. IV.

IV. RESULTS

In Fig. 5 we show the results of a huge number of cal-
culations performed with our program package to obtain re-
sults with various ion source spatial distribution. In addition
we employ also the PIC method and perform some simula-
tions in order to check out our results. In Fig. 5 (also in Figs.
8 and 9) the notation (7,/T,)— T, is used.

In Fig. 5(a) we show the “classic” set of results obtained
in the same manner as by Kos et al."® for the case B=1;
however, with an upgraded version of the program package,
while in Fig. 5(b) we show the case B=0. Whereas Fig. 5 is
employed for a qualitative comparison of alternative ion
source profiles and for many ion source temperatures, for
more quantitative comparison we select curves obtained for
T,=1 and in Fig. 6 we show a comparison of the results.
First, there is the potential profile obtained with the classic
ion source distribution as employed by B&J (Ref. 8) in com-
parison with our calculations with S8=1. In fact there is noth-
ing especially new regarding excellent agreement between
these two curves since this agreement has already been
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FIG. 6. (Color online) Comparison between B&J (Ref. 8) (scattered
squares) and our analytic-numerical model (solid line) and between S&E
(Ref. 9) (scattered circles) and our analytic-numerical method for the flat
ion-source.

shown by Kos et al."® Here we only repeat the calculation
and show the result. The new material is a comparison of
S&E’s result as scanned from their article’ with the result
obtained in our present investigation with a constant ion
source. S&E claim that their potential profile in their Fig. 1
(Ref. 9) is obtained for the case B8=1. However, we clearly
demonstrate that this potential profile corresponds to the case
B=0. This appears to be a coincidence. The coincidence is
resolved by means of the PIC simulation method and run for
the flat ion source (8=0). In Fig. 7 our constant ion source
results are compared to S&E’s scanned results. In Fig. 8
S&E’s scanned results are replotted and compared to our PIC
simulation results. Again, this method confirms that S&E
corresponds to S=0 and not to B=1 case, as S&E claimed in
their work. Note that the deviation of the results appears near
the edge of the computational system, where the two models
essentially differ since the PIC method can never be reduced
to quasineutral plasma, i.e., the sheath region is inherently

04F  ———S&E results (blue scattered) 7
05kL Our PIC simulation results
for S =const (red solid line)
-06 |
_07 L 1 " 1 " 1 " 1 "
0.0 0.2 04 x 06 0.8 1.0

FIG. 7. (Color online) Comparison of S&E’s results (scattered line) with our
PIC simulation (solid line).
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FIG. 8. Boundary potential @, dependency on the normalized ion-source
temperature T,,. It is not possible to distinguish between the results obtained
for two alternative ion source strength profiles within the drawing accuracy.

present in PIC simulations such as in nature, i.e., real experi-
ments. Comparison with a model with finite & plasma corre-
sponding such a PIC simulation will be done in a subsequent
investigation.

It turns out definitely that S&E in fact worked with the
constant ion source and NOT with the source proportional to
the electron density. The question arises why their results at
the plasma boundary are in such excellent agreement with
B&J and Kos et al. The present work gives a straightforward
answer to this question: it turns out that the plasma param-
eters at the boundary are invariant to the ionization source
profile. Figure 8 shows, e.g., the plasma potential at the point
of the electric field singularity. The difference between the
cases corresponding to either of above sources is so small (at
the third or fourth digit) that it could not be detected within
the drawing accuracy at all. In fact, from theoretical point of
view there might not be any difference, i.e., if it appears this
is the problem of numerical calculations. This result confirms

14 4
o 12f ]
'_A: L Si'\’e
o L
= 10
S sl 4 t
Mm 08| i_COHS i

/

1

|
0.6 .
a7
04 H&T limit (0.4046) i
- H&T limit (0.3444)
0.2+ i
00 | " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1

FIG. 9. (Color online) The relation between the ionization length L; and the
length of the system L for two alternative ionization mechanisms as defined
by H&T (Ref. 5).
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FIG. 10. (Color online) Velocity distributions for (a) 7,=0.17, and (b)
7,=10T,.

the theoretical predictions. This concerns only the last point,
the profiles, however are dependent on ionization strength
profiles.

Figure 9 represents the dependence of the characteristic
ionization length Eq. (9) on the ion-source temperature. Both
results obtained for the two alternative source profiles are
presented in parallel. The curve for S8=1 is our present result
performed for the numerical refinement calculation of the
result which has already been reported by Kos et al.,'’ the
novelty being the fact that the very curve for S=0 is a new
one.

While in both cases =0 and B=1 the results have been
known only for cold ion sources (single points for 7;,=0 at
our curves) over the last few decades, our results extend to
any ion-source (e.g., neutral) temperature. In Fig. 10 ion ve-
locity distribution is shown at various observing points [P (x)
on the right side of the discharge] for two distinct ion-source
(neutral gas) temperatures. The first one [Fig. 10(a)] corre-
sponds to classic laboratory investigations, while the second
one [Fig. 10(b)] is applicable to fusion relevant plasmas. In
both figures [(a) and (b)] plasma boundaries P (x,) are
marked in bold solid lines. It is evident that ion velocity
distribution at those particular points “suddenly” lacks ions
with negative ion velocities. This observation should be re-
defined as a new plasma-sheath criterion in near future. In
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fact, this was already been done to some extent by Block and
Filthammar’® via their criterion for double layer formation
existence.

V. DISCUSSION AND CONCLUSION

Our investigation covers a wide range of ion-source tem-
peratures for B=0 (so-called flat ion source strength distri-
bution). In fact this is the first investigation using the
analytic-numerical method for the finite ion-source tempera-
ture with flat ion-source strength distribution. Other methods
assume employment of, e.g., the PIC method. In the present
work the PIC simulation was used only for the purpose of
confirming our doubts on some work done in past, in particu-
lar to find out how S&E (Ref. 9) found their potential curve,
i.e., why it differed considerably from the curves obtained by
S&E and Kos ef al.'® We resolved the problem via our nu-
merical computations. Nevertheless we performed additional
PIC simulations to confirm our findings. Findings regarding
the S&E curve in fact are not of crucial importance to plasma
physics, but we feel obliged to resolve the problem for the
sake of scientific justice.

Our main result is obtaining the ionization length for an
arbitrary ion temperature (Fig. 9) and for different ionization
strength profiles. A particular case of the flat ionization pro-
file (8=0) is elaborated in details. Calculations with the clas-
sic B&J (Ref. 8) model for the ionization source proportional
to the electron local density (B8=1) are performed with in-
creased accuracy and presented in comparison to a flat ion
source. It emerges that the plasma-sheath boundary potential
@, is invariant on the particular ionization profile choice.
The detailed profiles and the ionization lengths, on the con-
trary, are not invariant on the particular potential profile
choice. The dependence of the ionization length on the ion-
source (neutral gas) temperature is investigated in detail for
both flat and Boltzmann-distributed ionization sources.
While in both cases =0 and 8=1 the results have only been
known for the cold ion sources (single points for 7;=0 at our
curves) for the last several decades, our new results embrace
any ion-source temperature. Finding the ionization length for
a particular ionization source profile with a finite temperature
is a task of fundamental importance in plasma physics, espe-
cially as a prerequisite for the intermediate plasma-sheath
region solution.

The results for arbitrary € and arbitrary ion source tem-
peratures obtained by Robertson'® may serve for some par-
ticular purposes. However, in order to obtain highly reliable
results it is necessary to employ high density grids and apply
various algorithms showing the invariance of results as the
grid density is increased. For finite & such results are still

Phys. Plasmas 16, 123503 (2009)

missing because of the demanding computations. The present
work establishes a good basis toward solving this task.
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