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ABSTRACT 

In this paper we present a new approach how to solve the plasma equation for the case 
of Maxwellian ion source of a finite-temperature distribution. This problem is an old one 
which assumes solving an integral equation of Fredholm or, alternatively, Volterra type with a 
particular bell-shaped kernel. Due to mathematical difficulties with such physically very 
important kernel choice its shape was in the past approximated in several ways yielding 
approximate numerical solutions. Unfortunately, these solutions are valid only in limited 
ranges of ion temperature. In our approach we work with exact kernel, so we are capable to 
obtain the results which are, in principle, of arbitrary precision in an arbitrary range of the ion 
source temperatures. Precise solution of plasma-equation with finite temperature ion-source is 
extremely important in determining the plasma parameters for determining the plasma sheath 
boundary. In this paper we obtain the ion velocity distribution at arbitrary point in a plane-
parallel discharge, which enable ones to calculate its moments (density, temperature and 
higher order moments) also at the edge of the system, where boundary conditions for a 
discharge should be known with a high degree of accuracy. We present here our results 
obtained both with PIC simulation and analytic-numerical method. 

1 0BINTRODUCTION 

Defining the edge of quasi-neutral plasma, i.e., the plasma-sheath boundary is an old but 
still not definitely solved problem which is of high relevance for fusion, laboratory and space 
plasmas. The plasma-sheath boundary is a surface up to which plasma can be considered as 
quasi-neutral, so that plasma can be modelled by using fluid approximation (instead of 
employing demanding kinetic model) by using the plasma-sheath boundary as a relevant 
boundary condition. However, this surface is still impossible to find with high accuracy. The 
plasma-sheath boundary can be rather precisely defined only in the asymptotic two-scale 
limit. In such an approximation the plasma-sheath boundary can be identified either from the 
plasma side (infinitely thin sheath) as a point of electric field singularity (famous Tonks-
Langmuir model from 1929 [1]), or from the sheath side (infinitely large sheath) as the point 
of vanishing electric field (famous Bohm model from 1949 [2]). Both models were originally 
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developed for the case of cold ion sources 
(ions created in plasma with negligible ion 
source velocities in comparison with electron 
velocities) and latter were generalized in a 
commonly adopted expression saying that the 
plasma-sheath is a place at which the ion 
average directional velocity in direction “z” 
normal to the plasma sheath surface is 

( )* ,i e i iu k T T m≥ +γ  

where k is Boltzmann’s constant, im  is the ion 
mass, *

eT is the electron so-called “screening” 
temperature( * /( / )e e eT en kdn d= Φ ), iT  is the 
ion effective temperature, Φ is the local 
plasma potential, and γ is the ion “polytropic” 
coefficient (defined by 

/ /i i idp dx kT dn dx= γ ), with all quantities 
taken at the plasma-sheath boundary.  

While during the last half-century γ  
was assumed to be constant in all fluid plasma 
models, it has been recognized only recently 
that γ  is a spatially varying quantity 
(depending on position x in the one-
dimensional case) rather than a global 
constant. Kuhn et al. (2006) [3] have shown 
by predominantly analytical means that in the 
asymptotic two-scale limit iγ  (subscript “i” 
means - ions) exhibits a sharp peak exactly at 
the plasma-sheath boundary. Jelić at al. 
(2007) [4], performed both analytic 
calculations and numerical particle-in-cell 
(PIC) simulations in the finite ε  plasmas 
confirming the results of Kuhn et al for the 
“cold” ion velocity distribution ( i eT T ). 
However, the analytic results obtained for 
cold ion-sources results are only of limited 
importance for fusion plasmas.  

In order to extend the validity of Tonks-
Langmuir model to the case of finite ion 
temperature source Bissell and Johnson in 
1987 [5] developed an appropriate model (as 
shortly described bellow). However, their 
solution to the model was not enough reliable 
i.e., fails for small ion-source temperatures as 
a consequence of their choice of the kernel 
approximation in integral equation. Secondly, 
Bissell and Johnson imposed the boundary 
condition at the plasma-sheath boundary in 

 
 
Fig. 1: Illustration of some basic plasma 
parameters, i.e., the plasma density, potential 
profile, ion temperature, local values of iγ and 
charge imbalance for various source strengths 
obtained from one set of our numerical plasma 
“experiments” by using PIC simulations with 
finite ε  
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advance, based on so called “marginal generalized Bohm criterion”. This assumption was 
recently explicitly disproved to be valid in general plasmas (se Riemann [6] and references 
therein). 

On the other hand Scheuer and Emmert in 1988 [7] used a better kernel approximation 
enabling them to extend the validity of Bissell-Johnson model also for negligible ion-source 
temperatures, thus fitting excellent the original Tonks-Langmuir model. Secondly, they did 
not impose plasma-sheath boundary in advance but instead they calculated it a’posteriori.  

However due to kernel approximations both above solutions remain limited either for 
small or for large temperatures. In the present work we present the method how to obtain the 
results for arbitrary /i eT T  in an arbitrary wide range. This is done by employing the exact 
kernel of integral equation and solving it numerically. In addition we present the results of our 
PIC simulations as a reference highly reliable reference investigation. 

2 1BTHEORETICAL BACKGROUNDS 

The geometry of the problem is symmetric one-dimensional plan-parallel as illustrated 
in Fig. 1 where we show some basic plasma parameters, i.e., the plasma density, potential 
profile, ion temperature and charge imbalance for various source strengths obtained from one 
set of our numerical plasma “experiments” by using PIC simulations with finite ε. Plasma is 
bounded between two perfectly absorbing walls biased at the same external electric potential. 
In simulation as well as in the theoretical model the electron velocity distribution function 
(VDF) is assumed to be Maxwellian with uniform electron temperature eT . Consequently the 
electron density over the system is Boltzmann–distributed. The influence of the cut-off of the 
tail of electron velocity distribution (which yields the “screening” temperature) is assumed to 
be negligible (although it is trivial to take this effect into account whenever necessary). The 
ions are produced by ionization of neutrals with finite initial velocities, and the pre-sheath 
constitutes the entire quasi-neutral plasma. The ion VDF ( )if x v,  in phase-space is calculated 
from Boltzmann’s equation: 

 ( )i i
i

i

f fe dv S x v
x m dx v
∂ ∂Φ

− = ,
∂ ∂

 (1) 

with x  the Cartesian space coordinate, v  the particle velocity, e  the positive elementary 
charge, im  the ion mass, ( )xΦ  the electrostatic potential at position x . The discharge is 
symmetric about the position 0x = , with (0) 0Φ = . The ionization rate in general depends on 
local coordinate. A formal solution of the above equation can be found along the 
characteristics in the form: 

1

i

e d dv
m dx v dx

Φ
=       (2) 

Source velocity distribution is bell-shaped (here it is Maxwellian) in velocity space. After 
introducing new variables:  

  2 2 '2 ( )

x x
ev v mi

′

′ =

= − Φ −Φ  (3) 

the Boltzmann equation transforms into:  

 '21 2 ( )
( )

i
i

i

df eS x v
dx v x m

⎛ ⎞
′= , + Φ −Φ′⎜ ⎟′ ′ ′ ⎝ ⎠

  (4) 

with a formal solution:  
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 21 2( ( )) ( )i ix
i

ef x v x S x dxv
v m

φ φ
⎛ ⎞
′ ′ ′, = , + −′⎜ ⎟′ ⎝ ⎠

∫  (5) 

where integration should be performed over all the space. As we pointed out the choice of the 
limits of integration depends on the model e.g., Bissell and Johnson used the marginal 
generalized Bohm criterion in advance as the boundary condition of the problem, while 
Scheuer and Emmert, instead, used the wall potential as the boundary condition and found a 
posteriori that the singularity of solution coincides with the place where generalized Bohm 
criterion holds, with rather high degree of accuracy.  

Having in mind that we look at a monotonic potential ( )xΦ  the last solution takes the 
form appropriate for finding the velocity distribution: 

 
1 2( ) ( )i i

i

e dxf v S v d
v m d

φ φ
Φ

⎛ ⎞ ′
′ ′ ′ ′Φ, = Φ , + − Φ⎜ ⎟′ ′Φ⎝ ⎠

∫  (6) 

For some particular source distributions a step further can be performed like in work of 
Emmert and al [8] for the artificial velocity distribution, and in Bissell and Johnson [5] and 
Scheuer and Emmert [6] works with the Maxwelian ion-source velocity distribution.  

On the other hand the Poisson’s equation states:  

 
2

2
0

( )i e
d e n n
dx ε
Φ

− = − ,  (7) 

where 0ε  is the vacuum dielectric constant and i en ,  are the ion and electron densities, 
respectively.  

In non-dimensional form the space coordinate is normalized to a suitable characteristic 
length  of the plasma, i.e., the physical extension L  of the system or the ionization length . 
In present investigation we are interested primarily in fusion plasmas where  or L  is much 
larger than the Debye length defined as  

 0
2

0

e
D

kT
n e
ελ = ,  (8) 

Here 0n  is the electron density in the center of the plasma. Normalized quantities of 
interest are as follows:  

e

e
kT
Φ

→Φ , ( )x x→ Φ , 
0

i e
i e

n
n

n
,

, ,→ , i

i

T
T
→τ , 

02
i

i
s

S S
c n

→ , 0

02
s i

i
c f f

n
→ , D →

λ ε  (9) 

where 0s e ic kT m≡ /  represents so called “cold-ion sound velocity”. Since we assume that the 
potential profile ( )xΦ  is monotonic, so that the inverse function ( )x Φ  is monotonic as well, 
the mathematic rule: 2 2 2 2 3( ) ( )d y dx d x dy dx dy/ = − / / | / |  holds. The Poisson equation (Eq. (8)) 
in normalized variables thus reads  

 
2 2

2
3( )

( )i e
d x df v dv n
dx d

ε / Φ
Φ, = + .

| / Φ |
∫       (10) 

Esq. (10) and (6) provide a complete description of the finite-ε  discharge. The central 
quantity of interest is obviously inverse electric field dx d/ Φ . Once this quantity is found the 
ion VDF can be calculated self-consistently from Eqs.(10) and Eq (6), depending on 
assumption of vanishing or non-vanishing ε  respectively. Then, the moments of the VDF can 
be calculated as functions of the potential Φ  or, equivalently, of the position x .  
Once a numerical solution of the system (10) and (6) is obtained, it is straightforward to 
calculate the ion velocity distribution and all their moments i.e. density ( ( )n f v dv= ∫ ), 
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directional velocity ( ( )u f v vdv= ∫ ), and ion temperature 2( )( )T f v v u dv= −∫  and all higher 
moments like heat flux, energy flux etc. at any location,  

The special quantity of our interest is the polytropic coefficient ( )i xγ  (or 
equivalently ( )iγ Φ ) which can be found by using the expression  

 1 1i i i i
i

i i i i

n dT n dT d
T dn T dn d

γ / Φ
= + ≡ +

/ Φ
  (11) 

with previously calculated moments of ion VDF. 

2B3 RESULTS  

Particle in cell method 
For quasi-neutral models ( 0ε = ) solutions can be obtained analytically only in some 

special cases. Solving above problem for finite iT  and 0ε >  is a very non-trivial one, even via 
numerical-computation method and still is a considerable challenge which is waiting for a 
reliable algorithm to be used. Fortunately, we can instead use Particle in Cell numerical 
simulation (PIC) method [9, 10] which is full kinetic and inherently requires 0ε >  while the 
ion temperature is arbitrary. The shape of the velocity distribution obtained by us from PIC 
simulations is illustrated in Fig 2. On the other hand the fluid quantities in PIC simulations 
must not be calculated a'posteriori from such velocity distribution but, instead, the number of 
particles with certain properties (density, directional velocity, temperature, heat and energy 
fluxes) are “counted” within each discretization cell during the simulation. 
 

 
In Figure 3 we show also the ion poly-tropic coefficient obtained in our PIC simulations 

as function on local potential. Simulations were performed with care by using huge computer 
resources and can be considered as highly reliable regarding ion velocity distribution ever 
done for Tonks-Langmuir model with finite ion temperature. 

However, a big problem of performing PIC simulations is the high cost of simulation. In 
addition the shape of our velocity distributions from PIC simulations is just a result of a very 
demanding “experiment”. The results from such experiments are characterized by 
experimental or numerical noise which can be removed with highly increased cost. Finally, it 
is difficult to derive some possible semi-empiric physical laws from simulation results. 

 
Fig. 2: Ion velocity distribution as obtained at 
various places by using PIC simulation 
experiments and corresponding polytropic 
coefficient as a function of local potential  

Fig. 3 Ion polytropic coefficients as obtained 
from PIC simulations  
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Therefore, our next step in the near future is to calculate corresponding curves from analytic-
numerical ion velocity distributions for 0ε > , with even higher degree of accuracy than from 
PIC simulations. As an intermediate step, however, here we present our improvements of the 
existing analytic-numerical method for finite ion temperature and 0ε = , which is extremely 
important in the theory of two-scale and intermediate scale plasmas (see [6]), before the 
problem with 0ε > will be finally also solved via this method. 

Analytic-numerical approach 

In the analytic numerical method here we use the procedure described above with ε=0. 
This approximation is perfect for fusion plasmas which are so dense that the sheath region can 
be neglected as a source of particles. The basic equation in this case is: 

 ( )i in f v dv= Φ,∫  (12) 

In the case of Maxwellian ion source Eq. (13) can be transformed into the form (see [6, 7]):  

  
1 ' ' '

00

1 exp[(1 )( )]K ( | |)
2 2

dx
B

τ τ
= + Φ −Φ Φ−Φ∫  , (13) 

where 0K  is the modified Bessel function (see e.g., [11]), primed quantities represent dummy 
variables and  

 01 exp( )
2

i
wall

e average

m nB
m n
τ

= Φ
π

 (14) 

depends on the kind of gas and the ratio of the electron over the ion temperature /e iT Tτ = . 
The wall potential is denoted by wallΦ  and averagen  is the average density of the electron (i.e., 
ion) population. 

 
We solve Eq. (13) 

with finite difference mesh 
with varying density at x 
positions. The location of 
the i-th mesh point is given 
by 

11 1
1i

ix
n

λ−⎡ ⎤= − −⎢ ⎥−⎣ ⎦
, 

with n mesh points and 
3λ ≥  to control higher 

density when x is 
approaching one. At each 

ix  we position unknown 
normalized potential iΦ that 
is initialized as monotone 
function with shape similar 
to expected result. Each 
zone between points 

ix and 1ix + is assumed to be 
linear variation of Φ  and 
integrated as integral with 
singularity.  

 
Fig. 4: Potential profiles as calculated from plasma-equation via our 
method. The range of the ratio of electron to ion temperature is 
practically unlimited and the solution is exact one within the 
numerical errors, but without any approximation of original 
formulas. 
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Equation (13) is rearranged to discrete version as  

 
1 ' ' '

00
exp[(1 ) ] exp[(1 ) ]K ( | |)

2 2 2
B dxτ τ τ

+ Φ = + Φ Φ −Φ∫  (15) 

On each iteration, the right side of Eq. (15) is calculated and new iΦ  is corrected with a 
soft step of 5% to a new position. Constant B is also adjusted with the soft step strategy at the 
middle (x=0.5). To assure stable convergence, each approximation of Φ  is additionally 
shifted and smoothed for next initialization In Fig 3. we show the potential profiles for 
varying the ion source temperature with other parameters fixed constant. We show the results 
of Bissell and Johnson presented by circles in the range of validity of their kernel 
approximation with our exact calculation in grey color. There is a nice qualitative and 
quantitative agreement within this range ( τ  =0.25, 0.5, 1.0, 2) . 

Slight deviations should be 
ascribed not to our model but rather to 
the model of Bisell and Johnson. In 
black color we present our solution 
extended for some arbitrary ion 
temperatures ( τ  =0.0001, 0.01, 0.1, 10), 
where Bissel&Johnson and 
Scheuer&Emmert models are not valid. 

. In Fig 5 we show the velocity 
distribution calculated at various 
location in the plasma discharge for the 
case τ=1. As mentioned above it is now 
technically “trivial” task to calculate the 
velocity distribution and consequently 
all the plasma parameters at each point 
of the plasma system. 

 

4 DISCUSSION AND CONCLUSION 

Our approach is novel in many aspects. As first by using PIC simulation method we 
obtained highly reliable potential profiles and ion velocity distribution ever done for Tonks-
Langmuir model with finite ion temperature and with finiteε . In addition we obtained the 
profiles of a recently defined quantity ion polytropic coefficient as a function of local plasma 
potential (or equivalently as a function of local space coordinate). This investigation can be 
regarded as a reference one for comparing with results obtained via other alternative methods. 
Secondly, by using analytic-numeric approach for the case 0ε =  we obtained the solution 
with exact integral equation kernel. The advantage of our solution is advantageous at least at 
next aspects, i.e., (i) that our solution is exact in the sense that the original analytic kernel 
(modified Bessel function is not approximated as in previous works), so the results can be 
obtained for any combination of discharge parameters with arbitrary accuracy, and (ii) that the 
range of ion temperatures is not anymore limited like in previous works. The results appear to 
be very clear qualitatively. Quantitative comparison of the basic quantity, i.e., potential 
profile obtained with our method shows nice agreement with the results of Bissell and 
Johnson in the range of validity of their results. New results, obtained by us outside this range 
are presented as well. Our next step will be to extend our analytic-numerical calculations to 
the case of finite ε , for comparing with PIC simulations, which are applicable to real system 
without dividing the problem into plasma and sheath scale a-priori. 

 
Fig. 5: Ion velocity distribution as obtained at various 
places by using our theoretical-numerical solution 
with exact kernel 
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