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ABSTRACT

Diverse visualization approaches are used for integrated fusion simulations in the scope of the
European Integrated Tokamak Modelling Task Force (ITM-TF). In an effort to provide diversity and
at the same time universality of visualizations for different backends, the ITMVis library provides a
common description of custom visualizations contributed by users. Beside dedicated visualizations
many ”standard” plots are used and are described within the ITM-TF data structure via an XSD
schema that contains plot representation tags. From the representation tags one can generate standard
plots for a specific computer language and visualization tool. Such an approach is used for the
VisIt visualization tool, where a C++ code for all possible plots in the database is generated with an
XSLT transform. Given that the same translation is needed by other tools in different languages to
provide standard visualizations, an intermediate, easily interpretable plot description using XML was
introduced. With this unified approach standard and custom plots are available for different backends
such as VisIt and matplotlib.

1 INTRODUCTION

The European Integrated Tokamak Modelling Task Force [1] (ITM-TF) is developing a frame-
work to enable coupling of physics codes in order to allow flexible modeling, simulation (both inter-
pretative and predictive), verification and validation for fusion research. The approach taken by the
ITM-TF is to couple codes via well-defined data structures that consistently describe different phys-
ical aspects covered in simulations. These Consistent Physical Objects [2] (CPOs) are used for data
storage and interchange between codes in the ITM simulation framework. The collection of CPO de-
scriptions form together a complete data model for diverse simulations that can also contain imported
experimental data. This approach enables a direct comparison of results with the experiment and/or
use experimental data as an input. The implementation phases and continuous development of the
ITM-TF framework are simplified by the fact that the CPO data structures are described by an XML
schema definition (XSD), which can be easily modified. This semi human-readable description al-
lows rigorous validation, creation of data bindings and translations for different purposes. The XSD
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Figure 1: XSLT flowchart for standard representation transformations used for visualization.

data-structure description is mainly used to generate CPO definitions in an XML format obtained by
applying the XSL translation [3] (XSLT) language. Consistency of CPO definitions is assured by the
XSD description, so that the derived CPO definitions in XML are consistent too. Additionally, the
XSDs allow the use of custom complexType data-structures that are reused in different CPOs. The
resulting CPODef.xml database description thus contains expanded and complete information about
the ITM-TF data model. From this starting point all other code can be generated through XSLT
processing. Figure 1 on the left shows this initial transformation from many CPO definitions into
single CPOs’ definition in XML. The fundamental purpose of CPODef.xml is a description of the
ITM-TF persistent storage database, where actual data is stored. Storage can also be in-memory only
(i.e. cached) for fast data exchange between coupled codes [4]. CPODef.xml is used for the ITM-TF
database creation and for describing access to data fields in the database by a variety of program-
ming languages. The multi-language library that interfaces access to CPOs in the ITM-TF database
is called Universal Access Layer [5] (UAL) and includes definitions of CPOs in each supported pro-
gramming language. The included definitions are then used in physics codes for data access with a
small set of the UAL subroutines responsible for retrieving and storing CPOs during the ITM sim-
ulations. The UAL thus interfaces codes with storage in the hierarchical formats [6, 7], which are
commonly used in high performance computing (HPC) and the fusion community. The UAL extends
these technologies by allowing cached parallel and distributed access to data between the ITM-TF
users.The ITM-TF adapted existing simulation codes to use the UAL and developed new codes[8]
that will allow detailed simulations of present and future device scenarios.

As most of the CPOs are time dependent, the ITM-TF database stores slices of each CPO during
simulation iterations or experiment sampling. Slicing occurs at different time scales for each CPO
depending on the physics involved [9, see Fig. 12]. To support the diagnostic of the time-dependent
data in CPOs, several visualization tools are used depending on the scales and representation of the
data that is regularly used in simulations. For many simulations, custom visualization are created
using general-purpose graphics libraries. To avoid such custom approaches and to provide standard-
ized sets of visualizations, the ITM-TF infrastructure support team (ISIP) aims to provide tools that
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Figure 2: The VisIt Kepler Actor – VisItUAL in a workflow within a loop reading data through the
Universal Access Layer.

can be used for visualizations without the need for scientists to manually program each plot. The
ITM-TF selected the Kepler [10] scientific workflow engine which enables graphical programming
of workflows. Data flow between processes (called actors) is modelled by wires. Through wires
only small amount of data (signals) are passed, usually just single numbers, strings and structures
with CPO names, which identify database entries. The Actual data exchange between ITM actors
encapsulating fusion codes is then implemented by direct access to the “real” data through the UAL
library.

2 ITM-TF VISUALIZATION TOOLS

The ITM aims to provide complex visualizations for physics codes that are adapted to the ITM
framework. To provide scientists with general visualization tools in the ITM framework, the EUFO-
RIA/JRA4 [11] project has developed a plugin for the VisIt [12] 3D visualization software that allows
reading CPOs from the ITM-TF database directly. For inclusion of VisIt in the Kepler workflows the
VisIt Kepler Actor (VKA) was developed. VKA has been recently upgraded to allow visualizations
of multiple CPOs and now includes its own graphical user interface (GUI) written in Java. VKA
provides seamless inclusion of VisIt into scientific workflows with UAL data access. Figure 2 shows
use of the VKA named VisItUAL in a workflow that iterates in a loop through all time slices of a
database retrieved through the UAL. VisIt is launched from the workflow itself and gets fired at each
loop iteration to show the data for the cycle specified as an input to VisItUAL. VisIt has a possibility to
save a session describing plots that are saved in a session file for later reuse for similar visualizations
where only the input database changes. Before starting the iterations, the actor ualinit copies the re-
quested input CPOs into a local runwork from the distributed ITM-TF database. For this, the “tuple”
user, machine, shot, and run identifying the database has to be specified. Copying and specifying the
input CPOs provides data provenance. This means that the source is well known and not destroyed
by modifications. Workflows prepared in this way can be easily shared and reproduced. Provenance
is a feature of scientific workflows that is often overlooked, omitting it brings the risk that results
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cannot be easily verified.
Other ITM/ISIP visualization tools are mainly based on the Python language, where matplotlib [13]

is used for creating 2D plots. JRA4 developed the Python Kepler Actor [11] that in contrast to the
Java based Jython Kepler actor can import matplotlib for creating custom non-blocking plots in Ke-
pler workflows. Another approach developed by the ITM to provide standardized plots is the IT-
MVis [14] visualization library that aims to provide several output backends for custom plots scripted
in Python. The ITMVis code snippets can be shared between users or put into a collective database of
custom visualizations. Many of such snippets were translated from other languages like IDL, which
is still used in many codes for visualization.

These visualization tools can be used within workflows or standalone. Most visualization tools
are diagnostic and reporting tools used standalone and offline. If data is available during the simula-
tion, they can also be used for monitoring of simulations. VisIt as a standalone tool needs an input file
(with .ual extension), containing tuples pointing to database entries. The capability of VisIt to allow
code instrumentation through its SIMlib was used to couple UAL and VisIt through the ualconnec-
tor[1, see ITM Grid Service Library] CPO server capable of serving complex unstructured meshes,
which are used e.g. in the 2D edge transport code [15] (SOLPS). VisIt as a general 3D scientific
visualization tool can be used for many purposes as it builds on top of the Visualization ToolKit [16]
(VTK) that has an established visualization pipeline. Another useful visualization principle used in
VisIt is data callback separation that a plugin needs to provide for visualizations.

3 STANDARD REPRESENTATIONS FOR VISUALIZATION

The ITMVis library tries to follow the VisIt data description by splitting visualizations of CPOs
into meta-data and plot data. This separation is a natural choice for all tools that want to prepare a
list of possible visualizations depending on data availability. It should be noted that not all CPOs are
filled with data when running a particular simulations. The ITMVis library presently concentrates on
custom plots, while the UAL reader plugin works with standard representations. A representation
is, in fact, a description of the visualization. There can be multiple representations of the same data.
The UAL reader plugin for VisIt (see Fig. 1) utilizes representation tags that are included in the XSD
files describing the CPOs. This means that ITM-TF data structure “knows” how it can be visualizaed.
This is similar to the concept of views in SQL, which are stored in a database directly (except that
these would be stored directly in the database). Representation tags are just a description that does
not enlarge storage but facilitates views on data.

Listing 1: A representation tag provides name, type and links for a visualisation. The tag is added as
an xs:annotation/xs:appinfo XSD element as shown in the following lines marked with a plus sign.
<xs:element name="imp" type="vecflt_type">
<xs:annotation>

<xs:documentation>Implicit source term [sˆ-1.mˆ-3]. Time-dependent.
Vector (nrho)</xs:documentation>

+ <xs:appinfo>representation name=rho_tor; var=scalar; meshtype=curve0;
+ link1=/rho_tor;</xs:appinfo>
+ <xs:appinfo>representation name=rho_tor_norm; var=scalar; meshtype=curve0;
+ link1=/rho_tor_norm; </xs:appinfo>
</xs:annotation>
</xs:element>

An example of updated XSD with two representation tags is shown in Listing 1. The representation
name is arbitrary and is shown as the last name in the VisIt path when adding plots. The attribute var
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can be either a scalar or a vector and describes the kind of data mapped on the mesh represented by
one or more links. Several meshtypes exist:

curve0 Curve as a polylines plot.
axis1D0 X axis given as a link1 vs. a bunch of curves from a matrix.
mesh1D0 Contours (closed curves) as a (2D) surface mesh.
rectlinear0 or curvilinear0 Meshes in 2D and 3D.

Meshtype describes the type of variable mapping in space. Each meshtype can have a variable num-
ber of links (link1, link2 and/or link3) and thus different kind of visualizations that are constructed
as VTK objects in VisIt. Links provide axis mapping to corresponding vectors or matrices that con-
stitute a mesh. The topology name at the end of the meshtype means (0D - points, 1D - lines, 2D -
surface, 3D - volume). The number at the end distinguishes variations of the same meshtype (0, 1,
...). If no topology is given, a general description is assumed (2D and 3D).

Depending on the type of data mapped on the mesh, given links are expanded to the proper hierar-
chical position within the CPO (called a path). When a xs:complexType is represented, then links
are expanded with a local path of the CPO during generation of CPOdef.xml from the XSD files. For
example <xs:complexType name="rz0D">with link1=r; link2=z gets expanded to link1=
eqgeometry/geom_axis/r link2=eqgeometry/geom_axis/z and thus adding the (missing)
relative path from CPO to the link. In other words, complexTypes are relocatable as they are reused in
many representations without absolute reference to fields in the same CPO. When an element speci-
fies complexType (e.g. <xs:element name="position" type="rz2D">), then the representa-
tion in complexType is used and not in the element itself. Simple elements (scalars, vectors, matrices)
can be directly linked within a CPO by specifying the absolute path to them. There are also com-
pound elements that are reused (expanded) as a whole (e.g. <xs:element name="coord_sys">)
in many CPOs. To distinguish between them, one has to describe links with absolute or relative paths.
This is done with with leading ”/” for absolute references and any other as relative to a compound or
complexType that is reused in many CPOs.

3.1 Intermediate representation layer

Standard representations are currently used for data visualization within some CPOs, where the
structure of the data fields allows this. For visualizations using data from multiple CPOs, the ITMvis
approach provides scripting/post-processing capabilities that can combine results and output them
through different backends. VisIt combined with the UAL reader plugin allows both representations
(standard and custom) by embedding a Python interpreter in the plugin itself. Standard represen-
tations were not included in ITMVis so far, although this was possible by direct interpretation of
CPOdef.xml or by Python code generation as in UAL reader (where C++ code representing plots is
generated from CPOdef.xml directly). The process of XSL translation shown in Fig. 1 with solid
lines could be repeated for ITMVis too. From the experience gained in developing templates for C++
code used in UAL reader, where 220000+ source lines are generated, we came to a conclusion that
introducing an intermediate XML description that extracts representation data from the CPOdef.xml
will reduce the complexity of the XSLT process when applying it to several programming languages.
This intermediate description is still in XML, except that it contains the standard representations
described more naturally in a custom XML schema that is easily converted further with XSLT. The
complexity of the XSLT code is thus reduced and distributed among XSL translations to and from
intermediate.xml. Such an approach unifies standard CPO representations and can be extended with
additional fields in the intermediate XML format for easier translation as required.



1402.6

4 RESULTS

The primary goal of the proposed visualization unification shown in Fig. 1 flowchart was to bring
standard representations to the ITMVis library via an intermediate XML description. To facilitate
this, the intermediate XML description was initially generated by adapting existing templates taken
from UAL reader. As the output is XML, the translation process is similar to CPODef.xml in terms
of XML attribute and element specification. Additional complexity occurs where representation links
XPath [3] are used to derive linked information. The red dotted lines in Fig. 1 show the implemented
XSL Translations. The simplest and most useful translation is generating documentation for standard
representations. Instead of using command line XSLT tools, one can translate them into HTML
via an XSL translator that is now built into all modern web browsers. All what is needed in the

Figure 3: List of standard CPO representations included within the ITM-TF database produced by
browser-builtin XSL translation.

intermediate XML description is to specify the XSL stylesheet in the XML header and open the file
in a browser. XSL and XML are then translated on the fly as shown in Fig. 3. The HTML output lists
all representation tags within each CPO that are listed on the top of the page. Standard representations
were generated by XSLT from intermediate XML directly into Python scripts that ITMVis can easily
include into its library of available plots. Python is sensitive to source code indentation so the XSL
templates were required to carefully generate the code. As the CPOs are hierarchically described with
structures that are often generalized into arrays of structures one needs to specify required indexes
of the structure. Required indexes are described in representation path by parentheses (loop#) in
Fig. 3. It should be noted that probing for data availability in CPOs is required for VisIt that builds
metadata information of available (valid) “plots”. To prepare valid metadata one needs to scan CPO
by “looping” through all available arrays of structures for which data might be available. Such
”scanning” can take great deal of time, so it is advisable to know in advance available data ranges
in arrays of structures. Figure 4 shows an example matplotlib plot with the corresponding generated
code snippet that was used within ITMVis for the plot. Metadata is returned only if plot is valid
(when data for the plot is available). Metadata provides plot description, axes names and units.
Plotdata prepares required data for plot creation. For field data this means also preparing mesh
information on which values are mapped. Further processing to produce visualization is backend
(VisIt, matplotlib) dependent. Currently 38 CPOs are supported with 639 standard representations,
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def itmvis_coreprof_te_value_rho_tor_metadata(coreprof):
’’’Signal value; Time-dependent; Vector (nrho)’’’
if field_filled(coreprof.cpo.te.value) \

and field_filled(coreprof.cpo.rho_tor):
md = dict()
md["type"] = ITMVIS_PLOTTYPE_XY
md["axes"] = ("Toroidal flux coordinate (not

normalised, equivalent to rho_tor_norm) [m]", "
Signal value")

md["axes_units"] = ("m", "eV.")
md["axes"] = md["axes_units"]
md["legend"] = ["Signal value"]
return md

else:
return None

def itmvis_coreprof_te_value_rho_tor_plotdata(coreprof):
data = {}
data["x"] = coreprof.cpo.rho_tor
data["y"] = coreprof.cpo.te.value
return data

Figure 4: The coreprof CPO electron temperature ITMVis plot generated from standard representa-
tions via intermediate.xml and ITMVis Python code generated by XSLT used to create the plot.

not including time-dependent representations that can be produced by expanding the plot along the
time-axis. For example, curves over time can be represented as rectilinear meshes.

5 CONCLUSION

Splitting the implementation of standard visualizations into two parts resulted in an intermediate
layer that can be easily used for further translation into target libraries used for visualization. Includ-
ing information about standard visualizations in the data structure descriptions allows to efficiently
propagate information on how to represent the data to various visualization tools. The use of XSL
translation assures correct resulting code during, even when changing the XSD schema files defining
the data structure. This is an advantage over custom visualizations as e.g. implemented in ITMVis,
which can require updates when the schemas are changed. Standard and custom visualizations are
now both possible within the ITMVis and VisIt approach. The introduction of an intermediate de-
scription layer simplifies the XSL templates and reduces template replication required for the target
languages. This unified approach to visualizations in the ITM-TF framework now leads to the avail-
ability of diverse visualization tools supporting both standard and custom representations.
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