next up previous
Gor: Porocilo z Laboratorijskih vaj Nazaj: Program

Jacobijeva matrika

Izpisana je skupna Jacobijeva matrika z rezultatom kot ga je izpisal paket Mathematica

J = {{{-(d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Cos[theta5]*
         Cos[theta6]) + a2*Cos[theta2]*Cos[theta5]*Cos[theta6]*Sin[theta4] - 
      a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta5]*Cos[theta6]*Sin[theta4] + 
      d6*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4] + 
      d4*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4] + 
      d2*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta5] + 
      a2*Cos[theta2]*Cos[theta4]*Sin[theta6] - 
      a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Sin[theta6] + 
      d4*Cos[theta4]*Sin[Pi/2 + theta2 + theta3]*Sin[theta6] + 
      d6*Cos[theta4]*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]*Sin[theta6] + 
      d2*Cos[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6] + 
      d6*Cos[Pi/2 + theta2 + theta3]*Sin[theta5]*Sin[theta6]}, 
    {a2*Cos[theta2]*Cos[theta4]*Cos[theta6] - 
      a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Cos[theta6] + 
      d4*Cos[theta4]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3] + 
      d6*Cos[theta4]*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3] + 
      d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta6]*Sin[theta4] + 
      d6*Cos[Pi/2 + theta2 + theta3]*Cos[theta6]*Sin[theta5] + 
      d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Cos[theta5]*Sin[theta6] - 
      a2*Cos[theta2]*Cos[theta5]*Sin[theta4]*Sin[theta6] + 
      a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta5]*Sin[theta4]*Sin[theta6] - 
      d6*Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6] - 
      d4*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6] - 
      d2*Sin[Pi/2 + theta2 + theta3]*Sin[theta5]*Sin[theta6]}, 
    {-(d2*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]) - 
      d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Sin[theta5] + 
      a2*Cos[theta2]*Sin[theta4]*Sin[theta5] - 
      a3*Cos[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta5] + 
      d4*Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta5]}, 
    {-(Cos[theta4]*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]) - 
      Cos[Pi/2 + theta2 + theta3]*Cos[theta6]*Sin[theta5] + 
      Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6]}, 
    {Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4] + 
      Cos[theta4]*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]*Sin[theta6] + 
      Cos[Pi/2 + theta2 + theta3]*Sin[theta5]*Sin[theta6]}, 
    {Cos[Pi/2 + theta2 + theta3]*Cos[theta5] - 
      Cos[theta4]*Sin[Pi/2 + theta2 + theta3]*Sin[theta5]}}, 

   {{d6*Cos[theta4]*Cos[theta6] + d4*Cos[theta4]*Cos[theta5]*Cos[theta6] + 
      a2*Cos[theta4]*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta3] - 
      a3*Cos[theta6]*Sin[theta5] + 
      a2*Cos[Pi/2 + theta3]*Cos[theta6]*Sin[theta5] - 
      d4*Sin[theta4]*Sin[theta6] - d6*Cos[theta5]*Sin[theta4]*Sin[theta6] - 
      a2*Sin[Pi/2 + theta3]*Sin[theta4]*Sin[theta6]}, 
    {-(d4*Cos[theta6]*Sin[theta4]) - d6*Cos[theta5]*Cos[theta6]*Sin[theta4] - 
      a2*Cos[theta6]*Sin[Pi/2 + theta3]*Sin[theta4] - 
      d6*Cos[theta4]*Sin[theta6] - d4*Cos[theta4]*Cos[theta5]*Sin[theta6] - 
      a2*Cos[theta4]*Cos[theta5]*Sin[Pi/2 + theta3]*Sin[theta6] + 
      a3*Sin[theta5]*Sin[theta6] - 
      a2*Cos[Pi/2 + theta3]*Sin[theta5]*Sin[theta6]}, 
    {a3*Cos[theta5] - a2*Cos[Pi/2 + theta3]*Cos[theta5] + 
      d4*Cos[theta4]*Sin[theta5] + 
      a2*Cos[theta4]*Sin[Pi/2 + theta3]*Sin[theta5]}, 
    {Cos[theta5]*Cos[theta6]*Sin[theta4] + Cos[theta4]*Sin[theta6]}, 
    {Cos[theta4]*Cos[theta6] - Cos[theta5]*Sin[theta4]*Sin[theta6]}, 
    {Sin[theta4]*Sin[theta5]}}, 

   {{d6*Cos[theta4]*Cos[theta6] + d4*Cos[theta4]*Cos[theta5]*Cos[theta6] - 
      a3*Cos[theta6]*Sin[theta5] - d4*Sin[theta4]*Sin[theta6] - 
      d6*Cos[theta5]*Sin[theta4]*Sin[theta6]}, 
    {-(d4*Cos[theta6]*Sin[theta4]) - d6*Cos[theta5]*Cos[theta6]*Sin[theta4] - 
      d6*Cos[theta4]*Sin[theta6] - d4*Cos[theta4]*Cos[theta5]*Sin[theta6] + 
      a3*Sin[theta5]*Sin[theta6]}, 
    {a3*Cos[theta5] + d4*Cos[theta4]*Sin[theta5]}, 
    {Cos[theta5]*Cos[theta6]*Sin[theta4] + Cos[theta4]*Sin[theta6]}, 
    {Cos[theta4]*Cos[theta6] - Cos[theta5]*Sin[theta4]*Sin[theta6]}, 
    {Sin[theta4]*Sin[theta5]}}, 

   {{d6*Sin[theta5]*Sin[theta6]}, {d6*Cos[theta6]*Sin[theta5]}, {0}, 
    {-(Cos[theta6]*Sin[theta5])}, {Sin[theta5]*Sin[theta6]}, {Cos[theta5]}}, 

   {{d6*Cos[theta6]}, {-(d6*Sin[theta6])}, {0}, {Sin[theta6]}, {Cos[theta6]}, 
    {0}}, 

   {{0}, {0}, {0}, {0}, {0}, {1}}}


Leon Kos
Thu Feb 22 10:29:35 GMT+0100 1996