Izpisana je skupna Jacobijeva matrika z rezultatom kot ga je izpisal
paket Mathematica
J = {{{-(d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Cos[theta5]*
Cos[theta6]) + a2*Cos[theta2]*Cos[theta5]*Cos[theta6]*Sin[theta4] -
a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta5]*Cos[theta6]*Sin[theta4] +
d6*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4] +
d4*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4] +
d2*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta5] +
a2*Cos[theta2]*Cos[theta4]*Sin[theta6] -
a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Sin[theta6] +
d4*Cos[theta4]*Sin[Pi/2 + theta2 + theta3]*Sin[theta6] +
d6*Cos[theta4]*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]*Sin[theta6] +
d2*Cos[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6] +
d6*Cos[Pi/2 + theta2 + theta3]*Sin[theta5]*Sin[theta6]},
{a2*Cos[theta2]*Cos[theta4]*Cos[theta6] -
a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Cos[theta6] +
d4*Cos[theta4]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3] +
d6*Cos[theta4]*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3] +
d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta6]*Sin[theta4] +
d6*Cos[Pi/2 + theta2 + theta3]*Cos[theta6]*Sin[theta5] +
d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Cos[theta5]*Sin[theta6] -
a2*Cos[theta2]*Cos[theta5]*Sin[theta4]*Sin[theta6] +
a3*Cos[Pi/2 + theta2 + theta3]*Cos[theta5]*Sin[theta4]*Sin[theta6] -
d6*Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6] -
d4*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6] -
d2*Sin[Pi/2 + theta2 + theta3]*Sin[theta5]*Sin[theta6]},
{-(d2*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]) -
d2*Cos[Pi/2 + theta2 + theta3]*Cos[theta4]*Sin[theta5] +
a2*Cos[theta2]*Sin[theta4]*Sin[theta5] -
a3*Cos[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta5] +
d4*Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta5]},
{-(Cos[theta4]*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta2 + theta3]) -
Cos[Pi/2 + theta2 + theta3]*Cos[theta6]*Sin[theta5] +
Sin[Pi/2 + theta2 + theta3]*Sin[theta4]*Sin[theta6]},
{Cos[theta6]*Sin[Pi/2 + theta2 + theta3]*Sin[theta4] +
Cos[theta4]*Cos[theta5]*Sin[Pi/2 + theta2 + theta3]*Sin[theta6] +
Cos[Pi/2 + theta2 + theta3]*Sin[theta5]*Sin[theta6]},
{Cos[Pi/2 + theta2 + theta3]*Cos[theta5] -
Cos[theta4]*Sin[Pi/2 + theta2 + theta3]*Sin[theta5]}},
{{d6*Cos[theta4]*Cos[theta6] + d4*Cos[theta4]*Cos[theta5]*Cos[theta6] +
a2*Cos[theta4]*Cos[theta5]*Cos[theta6]*Sin[Pi/2 + theta3] -
a3*Cos[theta6]*Sin[theta5] +
a2*Cos[Pi/2 + theta3]*Cos[theta6]*Sin[theta5] -
d4*Sin[theta4]*Sin[theta6] - d6*Cos[theta5]*Sin[theta4]*Sin[theta6] -
a2*Sin[Pi/2 + theta3]*Sin[theta4]*Sin[theta6]},
{-(d4*Cos[theta6]*Sin[theta4]) - d6*Cos[theta5]*Cos[theta6]*Sin[theta4] -
a2*Cos[theta6]*Sin[Pi/2 + theta3]*Sin[theta4] -
d6*Cos[theta4]*Sin[theta6] - d4*Cos[theta4]*Cos[theta5]*Sin[theta6] -
a2*Cos[theta4]*Cos[theta5]*Sin[Pi/2 + theta3]*Sin[theta6] +
a3*Sin[theta5]*Sin[theta6] -
a2*Cos[Pi/2 + theta3]*Sin[theta5]*Sin[theta6]},
{a3*Cos[theta5] - a2*Cos[Pi/2 + theta3]*Cos[theta5] +
d4*Cos[theta4]*Sin[theta5] +
a2*Cos[theta4]*Sin[Pi/2 + theta3]*Sin[theta5]},
{Cos[theta5]*Cos[theta6]*Sin[theta4] + Cos[theta4]*Sin[theta6]},
{Cos[theta4]*Cos[theta6] - Cos[theta5]*Sin[theta4]*Sin[theta6]},
{Sin[theta4]*Sin[theta5]}},
{{d6*Cos[theta4]*Cos[theta6] + d4*Cos[theta4]*Cos[theta5]*Cos[theta6] -
a3*Cos[theta6]*Sin[theta5] - d4*Sin[theta4]*Sin[theta6] -
d6*Cos[theta5]*Sin[theta4]*Sin[theta6]},
{-(d4*Cos[theta6]*Sin[theta4]) - d6*Cos[theta5]*Cos[theta6]*Sin[theta4] -
d6*Cos[theta4]*Sin[theta6] - d4*Cos[theta4]*Cos[theta5]*Sin[theta6] +
a3*Sin[theta5]*Sin[theta6]},
{a3*Cos[theta5] + d4*Cos[theta4]*Sin[theta5]},
{Cos[theta5]*Cos[theta6]*Sin[theta4] + Cos[theta4]*Sin[theta6]},
{Cos[theta4]*Cos[theta6] - Cos[theta5]*Sin[theta4]*Sin[theta6]},
{Sin[theta4]*Sin[theta5]}},
{{d6*Sin[theta5]*Sin[theta6]}, {d6*Cos[theta6]*Sin[theta5]}, {0},
{-(Cos[theta6]*Sin[theta5])}, {Sin[theta5]*Sin[theta6]}, {Cos[theta5]}},
{{d6*Cos[theta6]}, {-(d6*Sin[theta6])}, {0}, {Sin[theta6]}, {Cos[theta6]},
{0}},
{{0}, {0}, {0}, {0}, {0}, {1}}}